EBMT, SMT, Hybrid, and More: ATR Spoken Language Translation Systems

Eiichiro SUMITA, Yasuhiro AKIBA, Takao DOI, Andrew FINCH, Kenji IMAMURA, Hideo OKUMA, Michael PAUL, Mitsuo SHIMOHATA, and Taro WATANABE

© ATR Spoken Language Translation Laboratories

Outline

- **1. Hybrid MT System**
- 2. Phrase-based HMM SMT System
- 3. Paraphrasing for MT

• Hybrid MT System (Unrestricted J-to-E Track)

So many men, so many minds.

Today's Hybridization

"Multiple **EBMTs Followed By** A Selector Based On **SMT Models**"

EBMT₁ D³(Dp-match Driven transDucer)

^{c3} EBMT₂ Hierarchical Phrase Alignment based Translation (HPAT)

(1) Parse source language using source patterns.
(2) Map source patterns to target patterns.
(3) Translate leaves by referring to a dictionary.

Comparison of Two EBMTs

 Table 2: Features of the two EBMTs

	D3	HPAT
Unit	Sentence	Grammatical Unit
Coverage	Narrow	Wide
Quality	Good	Modest

Comparison of Two EBMTs (2)

^{c³} SMT-based Selector

Conventional selector: **1.** Language Model Our selector:

- 1. Language Model
- 2. Translation Model
- 3. Multiple comparison test

Our selector outperforms component MTs and conventional selectors based on LM.

Results (Unrestricted J-to-E Track): Selecting Effect

Table 4: Objective evaluation

	D3	HPAT	SELECT	DIFF.
BLEU	60.36	49.33	63.36	+2.7
NIST	10.35	9.78	10.72	+0.37
GTM	77.70	76.88	79.67	+1.97
mWER	28.86	37.18	26.31	-2.55
mPER	26.07	31.06	23.33	-2.74

13

^{c3} Results (Unrestricted J-to-E Track): Selecting Effect

Table 5: ATR's Overall Subjective Evaluation - cumulative percentages of S, A, B, C, and D ranks.

	D3	HPAT	SELECT	DIFF.
S	57.00	38.60	59.80	+2.80
S,A	70.00	59.80	73.00	+3.00
S,A,B	77.60	77.40	82.40	+4.80
S,A,B,C	83.40	83.40	87.80	+4.40
D	16.60	16.60	12.20	-4.40

Quality Ranks

(S) Perfect;

(A) Very Good;

(B) Good;

(C) Fair;

(D) Bad.

© ATR Spoken Language Translation Laboratories

Table 7+: ATR's Overall SubjectiveEvaluation vs. Corpus Size

	Supplied	Full BTEC	DIFF.
	BTEC (20K)	(200 K)	
S	34.00	59.80	25.80
S, A	50.60	73.00	22.40
S, A, B	72.20	82.40	10.20
S, A, B, C	81.80	87.80	6.00
D	18.20	12.20	-6.00

Quality Ranks (S) Perfect; (A) Very Good; (B) Good;

(C) Fair;

(D) Bad.

^{c³} Phrase-based HMM SMT System (Supplied J-to-E and C-to-E Tracks)

$$\hat{\mathbf{e}} = \arg \max_{\mathbf{e}} P(\mathbf{e} \mid \mathbf{f}) \qquad (1)$$

$$\hat{\mathbf{e}} = \arg \max_{\mathbf{e}} P(\mathbf{f} \mid \mathbf{e}) P(\mathbf{e}) \qquad (2)$$

$$P(\mathbf{f} \mid \mathbf{e}) = \sum_{\bar{\mathbf{f}}, \bar{\mathbf{e}}} P(\mathbf{f}, \bar{\mathbf{f}}, \bar{\mathbf{e}} \mid \mathbf{e}) \qquad (4)$$

$$P(\mathbf{f}, \bar{\mathbf{f}}, \bar{\mathbf{e}} \mid \mathbf{e}) = P(\mathbf{f} \mid \bar{\mathbf{f}}, \bar{\mathbf{e}}, \mathbf{e}) P(\bar{\mathbf{f}} \mid \bar{\mathbf{e}}, \mathbf{e}) P(\bar{\mathbf{e}} \mid \mathbf{e}) \qquad (5)$$
Phrase Segmentation Phrase Translation Phrase Ngram

C³

$$P(\overline{e} \mid e) \approx \prod_{i} P(\overline{e}_{i} \mid \overline{e}_{i-1})$$
(6)
Forward-backward algorithm to estimate probabilities

Figure 1: Phrase Ngram Model

Phrase Segmentation Model

 $\bullet \mbox{Likelihood of a particular phrase segment } f_j$ observed in f

$P(\mathbf{f} | \mathbf{\bar{f}}, \mathbf{\bar{e}}, \mathbf{e}) \propto P(\mathbf{\bar{f}} | \mathbf{f}) \approx \prod_{j} P(\mathbf{\bar{f}}_{j} | \mathbf{f})$

•Forward-backward algorithm to estimate probabilities

Phrase Translation Model

$P(\bar{\mathbf{f}} \mid \bar{\mathbf{e}}, \mathbf{e}) \approx \prod_{j} P(\bar{\mathbf{f}}_{j} \mid \bar{\mathbf{e}}_{a_{j}}) \quad (11)$

Parameter Estimation

Please consult Section 3.5 in the paper.

Phrase Segment Induction

Extract phrase pair using the following criterion:

$$P(\bar{e}|\bar{f})P(\bar{f}|\bar{e}) = \frac{\operatorname{count}(\bar{e},\bar{f})^2}{\sum_{\bar{f}}\operatorname{count}(\bar{e},\bar{f})\sum_{\bar{e}}\operatorname{count}(\bar{e},\bar{f})}$$

$\hat{\mathbf{e}} = \underset{\mathbf{e}}{\operatorname{argmax}} \frac{1}{Z(\mathbf{f})} \sum_{j} \lambda_{j} \log Pr_{j}(\mathbf{e}, \mathbf{f})$

◆Discriminative training to determine *λj* (Och and Ney 2002; Och 2003)
◆Word graph based search (Ueffing et al. 2002)

^{c³} Results: **Supplied task** JE and CE

Table 8+: *Evaluation (Supplied Task)*

J-to-E	System	mWER	Fluency	Adequacy
	Тор	41.8	34.8	34.1
	Our	61.4	34.8	19.4
	Bottom	61.4	31.0	19.4

C-to-E	System	mWER	Fluency	Adequacy
	Тор	45.5	38.2	33.3
	Our	46.9	38.2	29.5
	Bottom	61.6	25.0	29.0

© ATR Spoken Language Translation Laboratories

Paraphrasing for sentential variants

Three paraphrasers

- based on *DPmatching*.
 [Shimohata et al. 2002]
- 2. based on *SMT*. [Finch et al. 2002]
- based on dataoriented parsing.
 [Finch et al. 2004]

 Increased coverage and reduced word error rate for MT.

Two Effects

 Effective expansion of reference sentences for translation evaluation. ³Paraphrasing for long sentence translation

© ATR Spoken Language Translation Laboratories

Concluding Remarks

(1) hybridization of multiple EBMTs
followed by a statistical selector,
(2) new SMT, phrase-based HMM
SMT, and
(3) paraphrasing methods.