Auto Word Alignment Based Chinese-English EBMT

Yang Muyun, Zhao Tiejun et al

Machine Intelligence & Translation Lab
Research Center for Language Technology
School of Computer Science & Technology
Harbin Institute of Technology, China

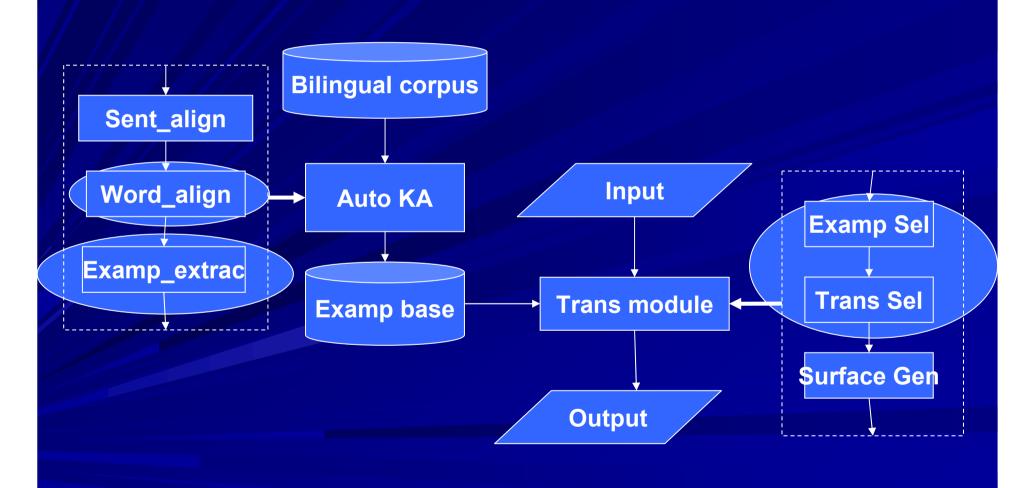
Contents

- Background
 - Introduction to MI&T Lab
 - Recent work
- Word Alignment Based EBMT
- Experiments and Discussions
- Conclusion

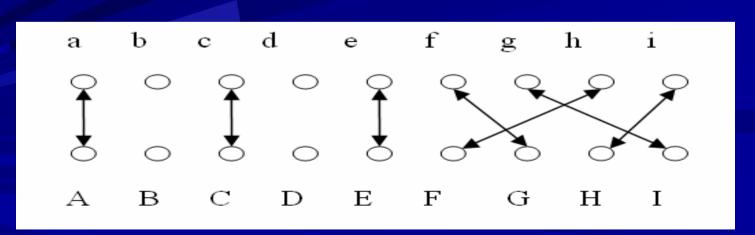
- About MI&T LAB
 - Began Chinese-English MT in 1987
 - First CEMT system of the mainland in 1988
 - Top CEMT in MT Evaluation 1996 Held by National 863 Project
 - Joint MT Lab with MSRC in 2000
 - Joint NLP&Speech Lab with MSRA in 2004

- MT in the MS-HIT Joint Lab
 - Conquer Barrier between Chinese English by Bilingual Corpus Based Knowledge Acquisition (KA)
 - From covert sentence pairs to overt translation knowledge
 - ■Least knowledge required → Statistical MT(or TM)
 - ■Some knowledge required → EBMT
 - ■Intensive knowledge required → RBMT

- MT in the MS-HIT Joint Lab
 - 2000-2001: Chinese English Bilingual Corpus
 Processing
 - Dictionary based sentence alignment;
 - Hybrid strategy for word alignment;
 - 100,000 Chinese English sentence beads;
 - Word aligned Chinese English corpus (60,000 beads)


- MT in the MS-HIT Joint Lab
 - 2001-2002: Auto KA Based MT
 - Mono-lingual parsing based Structure Alignment(1 Coling'02 paper)
 - Auto template acquisition based ECMT
 - MT Evaluation Methods (1 Coling'02 paper)
 - 2002-2003: Chinese parsing
 - Chinese treebank (30,000 with Base Phrases, Head)
 - Head-driven Model for Chinese Parsing
 - Word alignment based EBMT

Contents


- Background
- Word Alignment Based EBMT
 - Introduction
 - Word Alignment Based Example Extraction
 - Finding Right Examples
 - Translation Selection
- Experiments and Discussions
- Conclusion

- Introduction
 - Auto construction: least manual work;
 - Sub-sentential focus: phrase level example;
 - Adaptability: domain, (language if possible);
 - Linguistic light approach: less information loss;

- EBMT vs Segmentation (Dic ? Example_base)
 - Input: 您的登山小组有几个人?
 - Word_Seg: 您/的/登/山/小组/有/几/个/人/?
 - Example_Seg: 您的/登山小组/有几个人/?
 - Translation: your/ climbing group/ how many people are there/?
 - Final: How many people are there in your climbing group ?

- Word alignment based example extraction
 - Atomic (aligned words): (a-A)(c-C) (e-E) (f-G) (g-I)(h-F) (i- H)
 - Parallel extension: (ab-AB) (bc-BC) (bcd-BCD) (cd-CD) (de-DE)
 - Locked/non-parallel: (fghi-FGHI)

- Finding right examples
 - Example length: bigger context;
 - Segment (concatenated examples from same sentence) length: consistency;
 - Word links: better translation correspondence;
 - Frequency: statistically reliable;

Finding right examples

$$\overline{Segment} = \underset{\substack{0 < l < n+1 \\ k_{i-1} < k_i}}{\operatorname{Segment}} = \underset{\substack{0 < l < n+1 \\ k_{i-1} < k_i}}{\operatorname{Segment}} \sum_{i=0}^{l} \mathcal{S}([s_{k_{i-1}+1} ... s_{k_i}]^i)$$

$$\mathcal{S}([s_{k_{i-1}+1} ... s_{k_i}]^i) = (Length ([s_{k_{i-1}+1} ... s_{k_i}]^i))^w$$

$$\times An * (1 - \frac{k_i - k_{i-1} + 1}{Length ([s_{k_{i-1}+1} ... s_{k_i}]^i)})$$

$$\times \log(\sqrt{Fre}([s_{k_{i-1}+1} ... s_{k_i}]^i) + 1)$$

Translation Selection

- Evaluate the quality of translation segment with word translation probability;
- And with the number of aligned words in the segment

$$T = \underset{T'}{\operatorname{arg max}} P(T' \mid S) * P(An \mid m, l)$$

Contents

- Background
- Word Alignment Based EBMT
- Experiments and Discussions
 - Data settings
 - RBMT—the rival system
 - Performance and discussions
- Conclusion

- Data settings
 - Supplied: 20,000 beads for training;
 - Un-restricted: extra 58,600 beads including dining, traffic, sports and travelling domain;
 - Chinese-English dictionary:88,378 entries, for Chinese word segmentation and default translation;
 - Tested on the development corpus and the final test set;

- RBMT—the rival system
 - A typical Chinese-English translation system based on "analysis-transfer-generation";
 - First implemented as "BT863" in 1995, top system in MT evaluation held by National 863 project;
 - Re-implemented in 1999-2000, with solid improvement in Chinese analysis;
 - Integrated with Head-driven Chinese parser in 2002;
 - Rule base optimization in 2003;

Performance: development corpus

		BLEU-4	NIST-5
E B M T	Supplied	0.2082	5.5754
	-Optimal		
	Supplied	0.2052	5.3975
	- Baseline		
	Un-restricted	0.2209	5.5940
	-Optimal		
	Un-restricted	0.2236	5.6220
	- Baseline		
RBMT		0.1477	5.1990

Performance: final result

	Supplied		Un-restricted	
	Optimal	Baseline	Optimal	Baseline
BLEU4	0.2099	0.2113	0.2438	0.2427
NIST5	5.9554	5.927	6.1354	6.0603
GTM	0.6013	0.5988	0.6119	0.6152
WER	0.6169	0.6112	0.5941	0.5906
PER	0.5003	0.4976	0.4872	0.4820

- Discussions
 - Performance of word alignment tool:
 - ■80% on F-measure for both general and computer domain bilingual corpus[Yajuan et al, 2001]
 - Extended parallel examples are, linguistically, noise;
 - Locked example sometimes is a whole sentence.
 - No essential generation processing like: reordering and inflection

Conclusion

- A bi-direction CE EBMT:
 - Requires only a word aligned Chinese English bilingual corpus;
 - Example extraction efforts purely based on word alignment;
 - Our approach optperforms a well built RBMT system;
- A prototype, promising but need detailed polish!

