Experimenting with Phrase-Based Statistical Translation within the IWSLT 2004 Chinese-to-English Shared Translation Task

Philippe Langlais RALI/DIRO University of Montreal Canada

felipe@iro.umontreal.ca

Michael Carl

IAI Saarbrücken Germany

carl@iai.uni-sb.de

Oliver Streiter NUK National Univ. of Kaohsiung Taiwan

Motivations

- How far can we go in one month of work, starting from (almost) scratch and relying intensively on available packages ?
- Interested by the perspective taken by the organizers: validation of existing evaluation methodologies. See also the CESTA project (TECHNOLANGUE):

http://www.technolangue.net/

We participated in:

• The Chinese-to-English track using only the 20K sentences provided

Plan

- Few words on the core engine
- Our phrase-based extractors
- Experiments with phrase-based models (PBMs)
- Conclusions

The core engine

We used an off-the-shelf decoder: Pharaoh (Koehn, 2004). It requires:

- a flat PBM (e.g small boats ↔ bateau de plaisance 0.82)
 details are coming soon
- we used SRILM (Stolcke,2002) to produce a 3-gram
 ngram-count -interpolate -kndiscount1 -kndiscount2 -kndiscount3
- a set a parameters (one for the PBM, one for the language model, one for the length penalty and one for the built-in distorsion model)

details are coming soon

Pharaoh is a noisy channel phrase-based statistical engine.

Our phrase-based extractors

We tried two different methods of extraction:

- WABE: relying on viterbi alignments computed from IBM model 3
 We used Giza++ (Och and Ney, 2000) to get them out of an IBM model 3
- **SBE:** One capitalizing on redundancies in the training corpus at the sentence level
- WABE = Word-Alignment Based Extractor
- SBE = String-Based Extractor

WABE: Word-alignment based extractor

Yet another version of (Koehn et al.,2003; Tillmann,2003) and others. Basically:

- Considering the intersection of the word links obtained by viterbi alignment in both directions (C-E, E-C)
- (more or less) carefully extending this set of links with links belonging to the union of both sets (C-E,E-C)

Few meta-parameters are controlling the phrases acquired in this way:

length-ratio : ratio = 2

```
min-max src/tgt length : min=1, max=8
```


SBE: String-based extractor

If two strings are in relation of translation and if part of them also are, then we can induce a specific translation relation between the other parts.

 $res \leftarrow \mathcal{T} = \{(E_i, C_i), i \in [1, |\mathcal{T}|]\} \text{ (the training corpus)}$ repeat for all $\langle (E_i, C_i), (E_j, C_j) \rangle \in res$ do if $C_j = C_i \alpha$ or $C_i = C_j \alpha$ then if $E_j = E_i \beta$ or $E_i = E_j \beta$ then $res \leftarrow res \cup (\beta, \alpha)$ until convergence of res

54 461 parameters out of 20K sentences

		Chin	ese	English		
corpus	pair	tokens	words	tokens	words	
TRAIN	20 000	182 904	7 643	188 935	7 181	
TRAIN-A	11884	112 000	6 456	116 343	6 0 08	
$\mathrm{Train} extsf{-}\mathrm{Q}$	8116	70 904	4 0 2 4	72 592	3 900	
CSTAR	506	3 5 1 5	870	_	_	
Test	500	3 794	893	_	_	

Experiments with PBMs: setting

- the tokenization was the one provided, English material was lowerized,
- punctuation marks where removed from the translations in accordance to the specifications (s/ \.//g, s/ ?//g, s/ ,//g, s/ "//g, s/ \!//g, s/ -/ /g, s/ */ /g)
- source **OOV** appearing in the translations were replaced afterward by the most likely word according to our 3g model (in a left-to-right manner). Uppercased OOV were left unmodified.

Word-based translation versus PB translation

engine	NIST	BLEU%	MWER	MSER
ibm2+3g	5.0726	26.57	60.56	94.47
Pharaoh	5.5646	26.16	59.70	94.27
wbm by Pharaoh	4.8417	15.54	64.95	97.63

- ibm2+3g is an extension of the decoder described by (Niessen et al., 1998)
- Pharaoh was run with its default setting; each parameter of the FPBM was scored by relative frequency

λ_d	λ_{ϕ}	λ_w	λ_{lm}	NIST	Bleu%	MWER	MSER
1	1	0	1	5.5646	26.16	59.70	94.27
1	1	-1.5	1	6.3470	25.63	58.93	94.27
.2	.9	-1.5	.8	6.8401	28.44	56.25	94.07

Tuning the decoder

 λ_d , distorsion weight ([0,1]) λ_{ϕ} , transfer weight ([0,1]) λ_w , word penalty ([-3,3]) λ_{lm} , language model weight ([0,1])

We applied a poor man's strategy (sampling uniformly the parameter ranges)

- \hookrightarrow a relative gain over the default configuration (line 1) of 23%
- $\hookrightarrow~61\%$ of this gain obtained by tuning only the word penalty parameter

Merging different FPBMs							
config $ p $ NIST BLEU% MWER MSER							
WABE	6.8401	28.44	56.25	94.07			
+ WBM	7.0766	31.38	54.88	93.28			
+ SBE	7.0926	31.78	54.56	92.69			

Merging 2 models was done harshly by:

- copying $p_i(s|t), \forall s$ whenever t has not been seen in one model,
- averaging them in case both $p_1(s|t)$ and $p_2(s|t)$ exist,
- normalizing
- \hookrightarrow a relative gain of 3.7%

			0/ 61	0/ 50	0/ 00	
m	in max	$\mid model \mid$	<u>%</u> †1	%†2	%t3+	% p = 1
1	8	166 481	90.6	4.9	4.5	74.6
2	8	153 512	92.7	4.3	3.0	78.5
_2	4	73 369	87.0	7.1	5.9	68.7

The weakness of relative frequency

- %f1, %f2 and %f3+ stand for the percentage of parameters (pairs of phrases) seen 1, 2 or at least 3 times in the TRAIN corpus.
- % p = 1 stands for the percentage of parameters that have a relative frequency of 1.

model	Nist	Bleu%	MWER	MSER
relfreq	7.0926	31.78	54.56	92.69
ibm	7.3067	32.98	53.86	92.49
relfreq&ibm	7.3118	34.48	52.73	91.90
relfreq&pn-ibm	7.4219	34.6	53.02	91.70

Scoring phrases with IBM model 1

- baseline model (line 1) = merged FPBM of 306 585 parameters trained by relative frequency.
- \bullet rating these parameters by IBM model 1 yields a relative improvement in the $\rm NIST$ score of 3%
- pn-ibm: do not normalize parameters where $|\{s: p(s|t)\exists\}| = 1$ holds

config	Nist	Bleu%	MWER	MSER
relfreq&ibm	7.3118	34.48	52.73	91.90
А	7.1862	34.21	53.12	91.18
Q	6.4995	34.92	52.12	93.00
specific-lm	7.4702	33.64	53.27	91.90
А	7.3229	33.66	53.08	90.85
Q	6.7010	33.58	53.55	93.50

Specific models

- around 40% of the training sentences were interrogatives ones
- \Rightarrow specific language model combined to the general one (specific tuning over 6 parameters)

(we did not observe improvements by modelling specific FPBMs)

Translations we submitted before the deadline

ibm2+3g word-based translation engine,

straight a WABE FPBM

merge the best model obtained by merging word and phrase associations

 $\boldsymbol{Q}\boldsymbol{A}$ the one submitted for manual evaluation

manual to measure the usefulness of the automatic translations for human post-editing

Task: selecting one translation among the generated ones and enhancing its quality though slight modifications

The manual experiment

- 423 (84.6%) were just selections of one of the automatic translations.
- Out of these 423 translations, 85 (20%) were produced by the word-based engine (*ibm2+3g*).

trans1	take a bath for a twin room .
trans2	please take a bath for a double .
trans3	take a bath of double .
trans4	take one twin room with bath .
trans5	have a bath for double .
trans6	have a twin room with bath , please .
trans7	have a double room with bath , please .
manual	please, a twin room with bath .

Translations we submitted before the deadline

config	Bleu%	Nist	Gtm	WER	\mathbf{Per}
ibm2+3g	27.27	6.55	62.49	58.12	48.82
straight	30.92	7.52	66.93	56.05	47.90
merge	35.32	8.00	68.60	51.74	43.86
QA	33.89	7.85	68.55	53.24	45.14
manual	36.93	8.13	68.42	49.62	42.53

 \hookrightarrow the ordering of the variants was (almost) consistent with the one observed on the $\rm CSTAR$ corpus

Conclusions

• Is phrase-based translation \equiv Pharaoh(Giza++ $\lambda_g \times \text{SRILM}^{\lambda_s})$?

 \hookrightarrow at least a decent system can be obtained this way

- Things we tried that did not work better:
 - splitting the training sentences into shorter ones
 - replacing proper names by NAME
- Many factors to be tried:
 - word alignment procedure (Simard and Langlais, 2003)
 - other scoring functions (Zao et al., 2004)
- Not clear whether the best settings we found here would be appropriate for another translation task

References

Koehn P., "Pharaoh: a Beam Search Decoder for Phrase-Based SMT", To appear in Proceedings of the Conference of the Association for Machine Translation in the Americas (AMTA), 2004

Stolcke A., "SRILM - An Extensible Language Modeling Toolkit", In Proceedings of the International Conference for Speech and Language Processing (ICSLP), Denver, Colorado, September 2002

Och F.J. and Ney H., "Improved Statistical Alignment Models", in Proceedings of the Conference of the Association for Computational Linguistic (ACL), Hongkong, China, pp. 440–447, 2000

Koehn P., Och F.J. and Marcu D., "Statistical Phrase-Based Translation", In Proceedings of the Human Language Technology Conference (HLT), pp. 127–133, 2003

Tillmann C., "A Projection Extension Algorithm for Statistical Machine Translation", In felipe@ rali Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2003

Niessen S., Vogel S. Ney H. and Tillmann C., "A DP based Search Algorithm for Statistical Machine Translation", in Proceedings of the International Conference On Computational Linguistics (COLING), pp. 960–966, 1998

Simard M. and Langlais P., "Statistical Translation alignment with Compositionnality Constraints", HLT-NAACL Workshop: Building and Using Parallel Texts: Data Driven Machine Translation and Beyond, Edmonton, Canada, May 31, pp.19–22, 2003

Zhao B., Vogel S. and Waibel A., "Phrase Pair Rescoring with Term Weightings for Statistical Machine Translation", In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Barcelona, Spain, July 2004

WABE

Require: $\mathcal{P}, \mathcal{R}, minLength, maxLength, ratio$ **Ensure:**res contains all the pairs of phrases

1: Initialization 2: $res \leftarrow \{\}$ 3: for all $x: 1 \to |S|$ do $T[x] \leftarrow \{\}$ 4: for all $y: 1 \to |T|$ do $T[y] \leftarrow \{\}$ 5: 6: Step1: \mathcal{P} -projection 7: for all $(x, y) \in \mathcal{P}$ do add(x, y)8: 9: Step2: Extension 10: for $p:1 \rightarrow 2$ do repeat 11: $a \leftarrow \{\}$ 12: for $s: 1 \rightarrow |S|$ do 13: felipe@ rali

14: for all
$$t \in T[s]$$
 do
15: if $p = 2$ then
16: neighbor(x-1,y-1); neighbor(x+1,y-1);
17: neighbor(x-1,y+1); neighbor(x+1,y-1);
18: else
19: neighbor(x-1,y); neighbor(x+1,y);
20: neighbor(x,y-1); neighbor(x,y+1);
21: for all $(x, y) \in a$ do $add(x, y)$
22: until $|a| = 0$
23:
24: Step 3: Collect independent boxes
25: $b \leftarrow \{\}$
26: for $x : 1 \rightarrow |S|$ do
27: $X \leftarrow \{x\}; Y \leftarrow \{\}$
28: repeat
29: $X_m \leftarrow X; Y_m \leftarrow Y$
Felipe@ rall

felipe@ rali