

The ITC-irst Statistical Machine Translation System

for IWSLT-2004

N. Bertoldi, R. Cattoni, M. Cettolo, M. Federico

ITC-irst

Centro per la Ricerca Scientifica e Tecnologica I-38050 Povo (Trento), Italy

{bertoldi,cattoni,cettolo,federico}@itc.it

Outline

- The ITC-irst SMT System
 - Log-linear Model
 - Phrase-based Model
 - Decoding
 - System Architecture
- Experiments for IWSLT-2004
 - Selection of Training Data
 - Chinese Segmentation
 - Official Results

Log-linear model for SMT

Maximum Entropy framework for word-alignment MT approach:

$$\mathbf{e}^* = \arg\max_{\mathbf{e}} \sum_{\mathbf{a}} \Pr(\mathbf{e}, \mathbf{a} \mid \mathbf{f}) \approx \arg\max_{\mathbf{e}} \max_{\mathbf{a}} \Pr(\mathbf{e}, \mathbf{a} \mid \mathbf{f})$$
(1)

 $Pr(\mathbf{e}, \mathbf{a} \mid \mathbf{f})$ is determined through real valued feature functions $h_i(\mathbf{e}, \mathbf{f}, \mathbf{a}), i = 1 \dots M$, and takes the parametric form:

$$p_{\lambda}(\mathbf{e}, \mathbf{a} \mid \mathbf{f}) = \frac{\exp\{\sum_{i} \lambda_{i} h_{i}(\mathbf{e}, \mathbf{f}, \mathbf{a})\}}{\sum_{\mathbf{e}, a} \exp\{\sum_{i} \lambda_{i} h_{i}(\mathbf{e}, \mathbf{f}, \mathbf{a})\}}$$
(2)

Example: feature functions of IBM Model 4:

$h_1(\mathbf{e},\mathbf{f},\mathbf{a})$	=	$\log \Pr(\mathbf{e})$	(target language model)
$h_2(\mathbf{e},\mathbf{f},\mathbf{a})$	=	$\log \Pr(oldsymbol{\phi} \mid \mathbf{e})$	(fertility model)
$h_3(\mathbf{e},\mathbf{f},\mathbf{a})$	=	$\log \Pr(oldsymbol{ au} \mid \mathbf{e}, oldsymbol{\phi})$	(lexicon model)
$h_4(\mathbf{e},\mathbf{f},\mathbf{a})$	=	$\log \Pr(oldsymbol{\pi} \mid \mathbf{e}, oldsymbol{\phi}, oldsymbol{ au})$	(distortion model)

Phrase-based model

- a *phrase* is a sequence of one or more words (no semantic or syntactic meaning)
- one-to-one correspondence between phrases
- source words may be not translated (into \tilde{e}_0)
- insertion of target phrases without translation
- all models at phrase level except language model (at word level)
- frequency-based distributions
- statistics collected from a word alignment (e.g. produced by GIZA++)

Decoding

- approximate search criterion: $\tilde{\mathbf{e}}^* \approx \arg \max_{\tilde{\mathbf{e}}} \max_{\mathbf{a}} \sum_{i} \lambda_i h_i(\tilde{\mathbf{e}}, \mathbf{f}, \mathbf{a})$
- DP-based algorithm
- search progresses synchronously along the target string (decisions are taken when generating target phrase)
- search ends when all source positions are covered
- optimal final theory is chosen among all complete theories
- beam search: threshold pruning, histogram pruning
- garbaging of theories without extensions
- constraints on the length of the source and target phrases

System Architecture: Run-Time

System Architecture: Training

Experiments

- Chinese-English track (all the three data conditions)
- no optimization on the post-processing
- BLEU score for data selection and minimum error training

Preprocessing

- tokenization (EN)*
- dp-based Chinese segmentation (CH)*
- rule-based recognition of time and numerical expressions (CH, EN): week days, month names, percentages, cardinals, ordinals
- lower case text (EN)
- ignored unknown Chinese words
- split of long sentences (test)
- * when needed

Selection of Training Data

System	extra data		BLEU	NIST	MWER	MPER	
name	monolingual	bilingual					
baseline			0.3001	7.0157	50.8	41.5	(*)
lm-btec	BTEC		0.3509	7.5099	47.2	38.1	(*)
lm-db1	BTEC, DB1		0.3466	7.4475	47.6	38.3	
lm-db2	BTEC, DB2		0.3460	7.4427	47.1	38.3	
tm-btec	BTEC	BTEC	0.4311	8.5336	42.0	33.3	
tm-db3	BTEC	BTEC, DB3	0.4574	8.7890	39.7	30.5	(\star)

• DB1: news corpora

- DB2: press releases of Hong Kong Special Administrative Region
- DB3: selection of corpora from NIST MT-EVAL 2004 competition (large data condition)

Chinese Segmentation

- 1. Supplied:
 - Chinese segmentation as provided in the supplied training/test corpora
- 2. Special:
 - Chinese segmentation from scratch
 - word-frequency list (7K) extracted from the supplied training corpus
- 3. Full:
 - Chinese segmentation from scratch
 - word-frequency list (44K) provided by LDC

Official Results: Objective Scores

Data Condition	Segmentation		BLEU	NIST	MWER	MPER	
	training	test					
Supplied	Supplied	Supplied	0.3156	7.1604	53.1	45.3	
	Special	Special	0.3493	7.0973	50.8	43.0	(\star)
Additional	Supplied	Supplied	0.3499	7.5199	51.0	43.3	
	Supplied	Special	0.3514	7.3958	49.7	42.0	(\star)
	Supplied	Full	0.3490	6.6185	51.9	44.5	
Unrestricted	Full	Supplied	0.3774	7.0880	50.0	43.4	
	Full	Special	0.4118	7.0908	47.7	41.0	
	Full	Full	0.4409	7.2413	45.7	39.3	(\star)

 (\star) marked for subjective evaluation

Official Results: Subjective Scores

Data Condition	Segmentation		fluency	adequacy
	training	test		
Supplied	Special	Special	3.120	3.088
Additional	Supplied	Special	3.256	3.110
Unrestricted	Full	Full	3.776	3.526

THE END

Decoding: Expansion, Recombination and Pruning

Bertoldi, et al.

IWSLT-2004 Workshop

Kyoto, 30 September 2004