The ISI/USC MT System for IWSLT 2004

Ignacio Thayer, Emil Ettelaie, Kevin Knight, Daniel Marcu, Dragos Stefan Munteanu, Franz Joseph Och^{*}, Quamrul Tipu

* Now at Google, Inc.

Overview

- ISI/USC MT System
 - Overview
 - Model components
 - Simpler version of 2004 NIST Evaluation System
 - Training data
- Results

MT as Noisy Channel

- Translate source sentence *f* into target sentence *e*
- Noisy Channel
 - -P(e) language model
 - -P(f|e) translation model
 - -P(e|f) = P(e)P(f|e)/P(f)
- Translation is search

 $- \operatorname{argmax}_{e} P(e|f) = \operatorname{argmax}_{e} P(e)P(f|e)$

Log-Linear Model

- Translate source sentence *f* into target sentence *e*
- Direct Model
 - Feature functions $h_m(e, f)$
 - Feature weight λ_m
 - $-P(e|f) = exp(\sum_{M} \lambda_m h_m(e, f)) * Z(f)$
- Translation is search
 - $-\operatorname{argmax}_{e} P(e|f) = \operatorname{argmax}_{e} \sum_{M} \lambda_{m} h_{m}(e, f)$

Log-Linear Model

Training

- Feature functions trained individually
 - Specific training criterion for each FF
 - Phrase Probability: Relative Frequency
 - Language Model: Smoothed ML
 - ...
- Feature function weights are optimized to increase BLEU score

Minimum Error Rate Training

Translate Development Corpus

Measure BLEU Score

Update Model Weights To Reduce Translation Error

Och, F. J. "Minimum Error Rate Training for Statistical Machine Translation", ACL 2003.

Alignment Template Model

- Corpus is word aligned
 - Uni-directional word alignments are merged
- Phrase pairs are collected
 - A phrase is only collected if words on both sides are only aligned to each other
- Probability determined by relative frequency

- p(e|f) = C(e,f)/C(f)

Language Model

• Smoothed trigram

- Kneser-Ney smoothing

• SRI Language Modelling Toolkit

Other Feature Functions

- 10 other feature functions used for scoring
 - Length Bonus encourage longer sentences
 - Jump Penalty discourage non-monotonicity
 - Full list in paper

. . .

• Fewer feature functions that NIST 2004 system

Search

- Dynamic programming beam-search
- Generate translation hypothesis word-byword
- Heuristic rest-cost estimate
- Reordering constraints:
 - < 8 word jumps

Training Data - Supplied

- 20K lines BTEC corpus J-to-E, C-to-E
- LM trained on English half

Training Data - Additional

- 20K lines BTEC corpus C-to-E (x5)
 Re-segmented with LDC segmenter
- 6 of allowable LDC corpora
- LM trained on English half
- LM trained on 800M words news text
- Punctuation removal
 - No other rule-based translations/postprocessing

Training Data - Unrestricted

- 20K lines BTEC corpus C-to-E (x5)
- 167M words political+news data (NIST eval corpora)
- LM trained on English half
- LM trained on 800M words news text
- Punctuation removal
- No minimum error training
 - Model weights from "Additional" system were used.

BLEU Results

	C-to-E	J-to-E
Supplied	37.42	40.08
Additional	44.05*	N/S
Unrestricted	24.3**	N/S

* previously reported as 31.16

** no minimum-error rate training

Conclusion

- Applied our translation system to speech expressions
- Excited to learn more about spokenlanguage translation