

#### International Workshop on Spoken Language Translation Kyoto, Japan September 30 - October 1, 2004

#### Alignment Templates: the RWTH SMT System

Oliver Bender, Richard Zens, Evgeny Matusov, and Hermann Ney

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI **Computer Science Department RWTH Aachen University** D-52056 Aachen

1



## Content

- 1. overview: statistical machine translation
- 2. loglinear models
- 3. alignment templates
- 4. feature functions
- 5. minimum error training
- **6.** n-best lists and rescoring
- 7. experimental results
- 8. summary





#### **Related work**

- F. J. Och and H. Ney. 2002. Discriminative training and maximum entropy models for statistical machine translation. In *Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 295–302, Philadelphia, PA, July.
- F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, and D. Radev. 2004. A smorgasbord of features for statistical machine translation. In *Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004*, pp. 161–168, Boston, MA, May.
- A. Stolcke. 2002. SRILM an extensible language modeling toolkit. In *Proc. Intl. Conf. Spoken Language Processing*, pp. 901–904, Denver, CO, September.
- D. Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. *Computational Linguistics*, vol. 23, no. 3, pp. 377–403, September.





#### **Overview: Statistical Machine Translation**

- source string  $f_1^J = f_1...f_j...f_J$  to be translated into a target string  $e_1^I = e_1...e_i...e_I$ .
- classical source-channel approach:

$$egin{aligned} \hat{e}_1^I &= rgmax_{e_1^I} & \left\{ Pr(e_1^I|f_1^J) 
ight\} \ &= rgmax_{e_1^I} & \left\{ Pr(e_1^I) \cdot Pr(f_1^J|e_1^I) 
ight\} \ &= rgmax_{e_1^I} & \left\{ Pr(e_1^I) \cdot Pr(f_1^J|e_1^I) 
ight\} \end{aligned}$$

•  $Pr(f_1^J|e_1^I)$ : translation model (usually can be further decomposed into alignment and lexicon model)

4

•  $Pr(e_1^I)$ : language model



#### Loglinear models

- alternative: direct modeling of the posterior probability  $Pr(e_1^I|f_1^J)$
- use a loglinear model (Och and Ney 2002):

$$Pr(e_1^I|f_1^J) = p_{\lambda_1^M}(e_1^I|f_1^J) = rac{\exp\left[\sum\limits_{m=1}^M \lambda_m h_m(e_1^I,f_1^J)
ight]}{\sum\limits_{e'_1^I} \exp\left[\sum\limits_{m=1}^M \lambda_m h_m(e'_1^I,f_1^J)
ight]}$$

• decision rule:

$$\hat{e}_1^I = rgmax_{e_1^I} \left\{ \sum_{m=1}^M \lambda_m h_m(e_1^I, f_1^J) 
ight\}$$

- advantages:
  - easy integration of additional models/feature functions  $h_m$
  - minimum error training of model scaling factors  $\lambda_m$



# **Alignment Templates**

- primary translation model: alignment templates
- describes the alignment between sequences of source and target words
- automatically trained word classes are used instead of words for better generalization
- translation model incorporates:
  - phrase alignment probability
  - probability to apply an alignment template
  - phrase translation probability
- alignment templates extracted automatically from automatic word alignments

Kvoto, Sep0-



#### **Alignment Templates: Example**



- alignment A is a mapping from source sentence positions to target sentence positions  $a_1...a_J, a_j \in \{0, ..., I\}$ .
- alignment may contain connections  $a_j = 0$  with the 'empty' word  $e_0$
- alignments are created automatically with GIZA++ using IBM-1, HMM, and IBM-4 models



## **Alignment Combination Heuristics**

- word alignments  $A_1$  and  $A_2$  are trained in source-to-target and target-to-source direction, respectively
- such alignments contain many-to-one mappings in one direction only
- alignment combination depends on the particular language pair
- best translation results achieved:
  - Chinese-English: using alignments which only allow many-to-one mappings of English words
  - Japanese-English: using "refined" alignments
    - \* extend intersection  $A_1 \cap A_2$  by additional points
    - add a new point if either a horizontal or a vertical direct neighbor point exists



#### RWTH

#### **Base Models Used in Search**

#### • alignment templates

- $\bullet$  single-word translation model p(e|f)
- word-based trigram language model
- class-based five-gram language model
- word penalty model
- phrase penalty model
- penalty for alignment template reorderings



# **Minimum Error Training**

- ullet optimize the model scaling factors  $\lambda_1^M$
- training criterion: minimal number of errors on a development corpus
- optimization with respect to a certain automatic translation score (100 NIST, 1 BLEU, WER)
- use the downhill simplex optimization algorithm
- translate the whole development corpus in each iteration of the algorithm
- algorithm converges after about 200 iterations



- reordering: within alignment templates: fixed in training
- reordering of alignment templates: unconstrained or ITG (Japanese-English)
- search organization along target string positions
- beam search to handle the huge search space
- generation of *n*-best lists:
  - during search, generate word graphs
  - using the  $A^*$  search algorithm, compute *n*-best lists from the word graphs





#### **Additional** *n***-best List Features**

- (inverse) IBM-1 lexicon model p(f|e) (as trained with GIZA++)
  - + captures lexical co-occurrences, helpful for translation adequacy
- deletion model
  - + penalizes too short translation hypotheses
- high-order *n*-gram language models (n = 4, 5, ..., 9)
  - + enrich the system with knowledge about longer target language phrases



## **Deletion Model**

- the produced translations are often shorter than the reference translations
- longer hypotheses are to be favored
- deletion model feature (Och et al. 2004): for a given threshold  $\alpha$ :
  - count the number of source words, for which the IBM-1 translation probability given any of the target words in the hypothesis is below  $\alpha$ .
  - use several features with different values of  $\alpha$  (0.1, 0.01, etc.)
- $\bullet$  threshold  $\alpha$  tuned on a development corpus





#### **Experimental results**

- IWSLT 2004 Evaluation
- rescoring improvements





## **Evaluation Methodology**

- subjective evaluation as specified by the IWSLT 2004 consortium
  - translation fluency: from 1 ("incomprehensible") to 5 ("flawless English")
  - translation adequacy: how much information from a gold standard translation is contained in the hypothesis, from 1 ("none") to 5 ("all")
- objective evaluation: different automatic metrics computed using multiple references
  - Word Error Rate (mWER)
  - Position-Independent Word Error Rate (mPER)
  - BLEU score
  - NIST score
  - GTM score







#### **BTEC Chinese-English Supplied Corpus Statistics**

|       |            | Chinese | English |  |  |  |
|-------|------------|---------|---------|--|--|--|
| train | sentences  | 20 000  |         |  |  |  |
|       | words      | 182 904 | 160 523 |  |  |  |
|       | singletons | 3 525   | 2948    |  |  |  |
|       | vocabulary | 7 643   | 6 982   |  |  |  |
| dev   | sentences  | 50      | )6      |  |  |  |
|       | words      | 3 5 1 5 | 3 595   |  |  |  |
| test  | sentences  | 500     |         |  |  |  |
|       | words      | 3794    | _       |  |  |  |





#### **BTEC Japanese-English Supplied Corpus Statistics**

|       |                     | Japanese | English |  |  |
|-------|---------------------|----------|---------|--|--|
| train | sentences           | 20 000   |         |  |  |
|       | words<br>singletons | 209 012  | 160 427 |  |  |
|       |                     | 4 1 0 8  | 2 9 5 6 |  |  |
|       | vocabulary          | 9 2 7 7  | 6 932   |  |  |
| dev   | sentences           | 506      |         |  |  |
|       | words               | 4 374    | 3 595   |  |  |
| test  | sentences           | 50       | 0       |  |  |
|       | words               | 4 370    |         |  |  |

# **BTEC Japanese-English Unrestricted Data Track Corpus Statistics**

- additional resources:
  - full BTEC 1 Japanese-English corpus
  - Spoken Language Database (dialogs, hotel reservation domain)
- kindly provided by ATR

|            |                     | Japanese  | English |  |  |
|------------|---------------------|-----------|---------|--|--|
| train      | sentences           | 240 672   |         |  |  |
|            | words<br>singletons | 1 974 407 | 1770190 |  |  |
|            |                     | 8 975     | 3 658   |  |  |
| vocabulary |                     | 26 037    | 14 301  |  |  |
| dev        | sentences           | 506       |         |  |  |
|            | words               | 3 5 1 5   | 3 595   |  |  |
| test       | sentences           | 50        | 0       |  |  |
|            | words               | 3 7 9 4   | -       |  |  |



#### **Official Evaluation Results**

| Language | Automatic Evaluation |      |      |      | Subj. Evaluation |      |         |          |
|----------|----------------------|------|------|------|------------------|------|---------|----------|
| Pair     |                      | mWER | mPER | BLEU | NIST             | GTM  | Fluency | Adequacy |
|          |                      | [%]  | [%]  | [%]  |                  | [%]  |         |          |
| CE       | Small                | 45.6 | 39.0 | 40.9 | 8.55             | 72.1 | 3.36    | 3.34     |
| JE       | Small                | 41.9 | 33.8 | 45.3 | 9.49             | 76.4 | 3.48    | 3.41     |
|          | Unrestricted         | 30.6 | 24.9 | 61.9 | 10.72            | 79.7 | 4.04    | 4.07     |

balanced fluency/adequacy scores

• NIST score has the highest correlation with subjective ratings



#### **Rescoring Improvements - Chinese-English**

- error rates and scores on the development corpus (CSTAR 2003 test set)
- best overall performance achieved when optimizing the model scaling factors with respect to the NIST score
- base model scaling factors optimized using a narrow beam
- *n*-best lists created using a broader beam
- each added feature results in performance gain

| System           | Error    | Rates    | Accuracy Measures |      |  |
|------------------|----------|----------|-------------------|------|--|
|                  | mWER [%] | mPER [%] | BLEU [%]          | NIST |  |
| baseline         | 55.2     | 45.6     | 34.8              | 7.76 |  |
| broad beam       | 53.4     | 45.3     | 33.6              | 7.63 |  |
| + IBM-1 lexicon  | 50.9     | 42.1     | 36.4              | 8.06 |  |
| + deletion model | 50.6     | 42.2     | 37.1              | 8.07 |  |
| + 9-gram LM      | 50.6     | 42.2     | 38.0              | 8.14 |  |





#### **Rescoring Improvements - Japanese-English**

- error rates and scores on the development corpus (CSTAR 2003 test set)
- ITG reordering constraints in search improve the translation quality

| System            | Error Rates |          | Accuracy Measures |      |  |
|-------------------|-------------|----------|-------------------|------|--|
|                   | mWER [%]    | mPER [%] | <b>BLEU [%]</b>   | NIST |  |
| baseline          | 48.7        | 38.6     | 44.3              | 9.10 |  |
| + ITG constraints | 45.1        | 36.0     | 47.3              | 9.32 |  |
| + broad beam      | 49.5        | 37.3     | 45.0              | 9.32 |  |
| + IBM-1 lexicon   | 44.6        | 35.7     | 48.9              | 9.71 |  |
| + deletion model  | 43.2        | 34.7     | 50.1              | 9.80 |  |
| + 5-gram LM       | 42.6        | 34.2     | 51.5              | 9.92 |  |





## Conclusions

- translation system based on loglinear model combination
- additional knowledge sources easily integrated as features
- phrasal context and local word reorderings are important
  - $\Rightarrow$  captured in the alignment templates model
- direct optimization of base models using minimum error training of model scaling factors
- an additional deletion model feature penalizes too short translations
- $\bullet$  scaling factors for additional features optimized using  $n\text{-}\mathsf{best}$  lists of translation hypotheses
- optimization of the RWTH system with respect to the NIST score seems to correspond best to subjective evaluation criteria
- on the BTEC Chinese-English and Japanese-English tasks, translations of good quality were produced

