TALP: Xgram-based Spoken Language Translation System

Adrià de Gispert José B. Mariño

Outline

- Overview
- Translation generation
- Training
- IWSLT'04 Chinese-English supplied task results
- Conclusion and further work

Overview

- TALP Statistical Machine Translation (SMT)
- Integrated speech-text approach
- Finite-State Transducer (FST) implementation
- Automatically learnt from parallel corpus
- Bilingual units called tuples

Translation generation

- Maximising joint probability
- Variable-length N-gram of bilingual units (tuples)

X-gram

$$
\begin{aligned}
& \hat{f}=\underset{f}{\operatorname{argmax}} p(e, f) \\
& p(e, f)=\prod_{n=1}^{N} p\left((e, f)_{n} \mid(e, f)_{n-1} \ldots(e, f)_{n-X+1}\right) \\
& (e, f)_{n}=\left(e_{i(n)} \ldots e_{i(n)+I(n)}, f_{j(n)} \ldots f_{j(n)+J(n)}\right)
\end{aligned}
$$

tuple

FST implementation

- Search for best-scoring path
- Speech translation: include acoustic models

Training

Preprocessing

- Particular for each pair of languages
- Categorisation personal names, dates, times, numbers, ...
- Chinese-English IWSLT'04 supplied track:
- Clearing out punctuation no gain
- Segmentation of longer sentences

	\# sentences	Lavg
Chinese	$20 \mathrm{~K}(22.2 \mathrm{~K})$	$9.1(8.2)$
English		$9.4(8.5)$

Word alignment

- Standard GIZA++ alignments $15 H^{5} 3^{3} 4^{3}$
- Source-to-Target (s2t)
- Target-to-Source (t2s)
- Union
- Intersection
- Tuples can be extracted from any alignment
- Usually union and s2t are used

Tuples extraction

- Tuples are bilingual units containing
- one or more source words
- zero, one or more target words
- Subset of phrases, unique under following conditions
- Example

1. Monotonous segmentation of the pair
2. Words are consecutive along both source and target
3. No word in the tuple is aligned to a word outside the tuple
4. The tuple cannot be decomposed without violating 1-3

Embedded words dictionary

- Embedded words
- translation appears always inside a tuple (never isolated)
- an 'accurate' dictionary is built intersection
- New unigrams (history independent)

DICTIONARY ENTRIES:

Given a source word, look for the most freq. aligned words

1. Target words are consecutive
2. Target words are aligned only to the source word

X-gram estimation

```
$ (f1f2, \mp@subsup{e}{1}{})(\mp@subsup{f}{3}{},\mp@subsup{e}{2}{}\mp@subsup{e}{3}{}\mp@subsup{e}{4}{})(\mp@subsup{f}{4}{}\mp@subsup{f}{5}{}\mp@subsup{f}{6}{},\mp@subsup{e}{5}{}\mp@subsup{e}{6}{})$
```

$$
p(e, f)=\prod_{n=1}^{N} p\left(T_{n} \mid T_{n-1} \ldots T_{n-X+1}\right)
$$

- Usually, maximum memory is 3
- Pruning strategies
- Min. number of times a certain history must occur k
- threshold of divergence between output prob. distributions for two nodes sharing recent history $\quad f$
k is untouched (= 1)
f used for slight pruning ($f=0.2$)

Chinese-English supplied track

- Results on development set
- Union (aU) vs. s2t alignment (a2)
- Normal vs. segmented corpus (seg)
- Normal vs. FST pruning (f)

run	BLEU	NIST	WER	PER	GTM	E	
aU	0.244	5.169	0.615	0.529	0.591	7	
aU,seg	0.251	5.187	0.607	0.521	0.595	7	
aU, seg,f	0.255	5.210	0.603	0.518	0.594	7	
a2	0.319	3.789	0.614	0.552	0.573	16	
a2,seg	0.318	3.871	0.606	0.546	0.573	18	
a2,seg,f	0.314	3.678	0.607	0.548	0.570	19	

no embed.	aU,seg,-D	0.264	4.741	0.606	0.524	0.592	7
dictionary	a2,seg,-D	0.315	3.706	0.607	0.547	0.571	19

Automatic evaluation results

- Statistics of submitted runs

run	tuples	vcb	length	embed
aU,seg,f	97 K	27 K	3.9	4.7 K
a2,seg,f	140 K	29 K	2.9	1.5 K

- Longer tuples with Union (more embedded)
- Many tuples to NULL with s2t (28\% over total, 7.5\% union)
- Results

run	BLEU	NIST	WER	PER	GTM	E
aU,seg,f	0.279	6.778	$\mathbf{0 . 5 5 6}$	$\mathbf{0 . 4 6 5}$	0.647	5
a2,seg,f	0.331	5.391	$\mathbf{0 . 5 5 0}$	0.490	0.620	11

- Contrast BLEU vs. NIST (related to length)

Manual evaluation results

- Results

run	fluency	adequacy
aU, seg,f	2.792	3.022

- Expected fluency deficiency no explicit long reordering
- 'Much of the information' is transmitted
- Examples:

Translation: that what time start
Reference1: what time does it start
Translation: stomach very hurts
Reference1: i have a severe pain in my stomach

Conclusion and further research

- Tuple-based FST translation system presented
- Adequate for pairs of languages similar in word-order
- Further research
- Embedded N-grams
- Generalization of tuples
- Explicit reordering techniques

Thanks for attention

Centre de Tecnologies i Aplicacions del Llenguatge i la Parla TALP Research Center
Universitat Politècnica de Catalunya (UPC)
Barcelona

