Example-based Machine Translation using Structural Translation Examples

Eiji Aramaki*
Sadao Kurohashi*
* University of Tokyo

Proposed System

Proposed System

Structural Translation Examples

- The Advantage of High-Usability
- BUT: It requires many technologies
 - Parsing & Tree Alignment (are still being developed)
 - → A naive method without such technologies may be efficient in a limited domain

Outline

- Algorithm
 - Alignment Module
 - Translation Module
- Experimental Results

Conclusion

System Frame Work

- Alignment module
 - Builds Translation Examples from Bilingual Corpus
- Translation module
 - Selects Translation Examples
 - Combines them into a Translation

Alignment Module (1/2)

- A sentence pair is analyzed by parsers [Kurohashi1994][Charniak2000]
- Correspondences are estimated by Dictionarybased Alignment method [Aramaki 2001]

Alignment Module (2/2)

- Translation/example
 - = A combinations of correspondences which are connected to each other
 - With Surrounding phrases (= the parent and children phrases of correspondences)
 - for Selection of Translation Examples

System Frame Work

- Alignment module
 - Builds Translation Examples from Bilingual Corpus
- Translation module
 - Selects of Translation Examples
 - Combines them into a Translation

Translation Module(1/2)

TRANSLATION EXAMPE

pos 中国語の
(Chinese)

が 新聞を
(news paper)
下さい
(give)

TRANSLATION EXAMPE

Give

newspaper

- Equality: The number of equal phrases
- Context Similarity:
 - calculated with a Japanese thesaurus
- Alignment Confidence:
 - the ratio of content words which can be found in dictionaries

Translation Module(1/2)

INPUT TRANSLATION EXAMPE

- Equality: The number of equal phrases
- Context Similarity:
 - calculated with a Japanese thesaurus
- Alignment Confidence:
 - the ratio of content words which can be found in dictionaries

Context = surrounding phrases

- Equality: The number of equal phrases
- Context Similarity:
 - calculated with a Japanese thesaurus
- Alignment Confidence:
 - the ratio of content words which can be found in dictionaries

Translation Module(1/2)

TRANSLATION EXAMPE **INPUT** 中国語の 日本語の (Chinese) (Japanese) Give me 新聞を 新聞を (news paper) (news paper) Japanese 下さい 下さい newspaper (give) (give)

- Equality: The number of equal phrases
- Context Similarity:
 - calculated with a Japanese thesaurus
- Alignment Confidence:
 - the ratio of content words which can be found in dictionaries

Translation Module(2/2)

- Selection
 - Score:= (Equality + Similarity) x (λ + Confidence)
- Combine
 - The dependency relations & the word order in the translation examples are preserved

 The dependency relations & the word order between the translation examples are decided by heuristic rules

Exception: Shortcut

If a Translation Example is almost equal to the input ⇒ the system outputs its target parts as it is.

- Almost equal
 - = Character-based DP Matching Similarity > 90%

Outline

- Algorism
 - Alignment Module
 - Translation Module
- Experimental Results
- Conclusion

Experiments

 We built Translation Examples from training-set (only given in IWSLT)

Auto. Eval. Result

	bleu	nist	wer	per	gtm
Dev-set	0.38	7.86	0.52	0.45	0.66
Test-set	0.39	7.89	0.49	0.42	0.67

- Dev-set & Test-set score are similar
 - ← the system has no tuning metrics for the dev-set.

Corpus size & Performance

The system without a corpus can generate translations using only the translation dictionaries.

The score is not saturated ⇒the system will achieve a higher performance if we obtain more corpora.

Subjective Evaluation

Subjective Evaluation Result

Fluency	3.650	5: "Flawless English" 4: "Good English"	_
Adequacy	3.316	3: "Non-native English" 2: "Disfluent English" 1: "Incomprehensible"	

- Error Analysis
 - Most of the errors are classified into the following three problems:
 - (1) Function Words
 - (2) Word Order
 - (3) Zero-pronoun

Problem1: Function words

OUTPUT	i 'd like to contact my Japanese embassy
Translation Example	I 'd like to contact my bank

- The system selects translation examples using mainly content words
 - ⇒ it sometimes generates un-natural function words
 - Determiners, prepositions

Problem 2: Word Order

OUTPUT is there anything a like local cuisine?

- The word order between translation examples is decided by the heuristic rules.
- The lack of rules leads to the wrong word order.

Problem 3: Zero-pronoun

OUTPUT has a bad headache.

- The input includes zero-pronoun.
 - ⇒ outputs without a pronoun.

Outline

- Algorism
 - Alignment Module
 - Translation Module
- Experimental Results
- Conclusion

Conclusions

- We described an EBMT system which handles Structural translation examples
- The experimental results shows the basic feasibility of this approach
- In the future, as the amount of corpora increases, the system will achieve a higher performance

