Phrase-based alignment combining corpus cooccurrences and linguistic knowledge

Centre de Tecnologies i Aplicacions del Llenguatge i la Parla UNIVERSITAT POLITÈCNICA DE CATALUNYA

> Adrià de Gispert José B. Mariño Josep Maria Crego

- Introduction
- Proposed phrase alignment strategy
- Experimental results
- Discussion
- Further research

Introduction

- Motivation
- Word and phrases association measures
- Proposed phrase alignment strategy
- Experimental results
- Discussion
- Further research

Motivation

- Word alignment is crucial to train SMT systems
- GIZA++ alignments are state-of-the-art, but...
 - Symmetrization strategies are non-linguistic
 - Model complexity to introduce additional knowledge
- Cooccurrence-based algorithms perform well too, but...
 - Their output must be a many-to-many alignment

Goal: phrase alignment following linguistic criteria

Word & phrase cooccurrence measures

- ϕ^2 score, t-score, Dice, ...
- Can be computed between words but also phrases
- Phrase cooccurrence measures give complementary
 and stronger evidence
 maybe

					,
	ple	ease	а	23.1	
por	22.4	00	lo	18.2	8.0
favor	1.2	0.9	mejor	12.2	

- Not efficient to compute for all possible phrase pairs
- A selection of candidate phrases is needed

- Introduction
- Proposed phrase alignment strategy
 - Candidate phrase selection and classification
 - Phrase-to-phrase alignment
 - Word alignment algorithm
- Experimental results
- Discussion
- Further research

Phrase alignment strategy

Four stages:

phrase selection (classification)

post-processing

- Linguistically-guided selection of candidate phrases
- Verb groups and idiomatic expressions
- Add knowledge limiting cooc. counts table size
- ϕ^2 -based competitive linking until threshold Very-high precision required
- one-to-one word alignment with unaligned tokens

final global decisions on word alignment

Candidate selection: Verbs

- Rule-based detection
 - Using word, POS and base form
 - Classification according to head verb base form
 - Check base forms against lists to avoid tagging errors

we will bring did you bring i have brought

 ϕ^2 (bring,x)

 ϕ^2 (y, reservar)

reservaré reservarás habíamos reservado has reservado reservé

Single-word verbs substituted by base form

- Reduction in cooc. table size
- Limit: Base form ambiguity not tackled

IWSLT'04 – Kyoto (Japan)

Candidate selection: Idioms

- Lists of frequently-used idioms
 - Spanish: 1496 idioms
 - English: 49 idioms
- No further classification
 - Compute coocs. against all other language tokens
 - Slight increase in cooc. table size

.

at last

on the other hand

how many in addition ϕ^2 ("idiom",x)

Phrase-to-phrase alignment

- Competitive linking strategy until threshold is met
- Verb groups and idioms treated separately
- Example

BF(need) how many rooms will you need ? cuántas habitaciones necesitaréis ?

BF(necesitar)

 ϕ^2 ("how many",cuántas) = **2.5** ϕ^2 ("how many",habitaciones) = 23.0 ϕ^2 ("how many","BF(necesitar)") = 33.4

 ϕ^2 ("BF(need)",cuántas) = 31.05 ϕ^2 ("BF(need)",habitaciones) = 19 ϕ^2 ("BF(need)","BF(necesitar)") = **0.9**

Word alignment algorithm

- One-to-one alignment
- Iterative best-first search
- Heuristic based on link probabilities
 - Initial alignment generated using ϕ^2 scores
 - Estimate link probabilities
 - Realignment using new estimates
- Syntax-guided cohesion constrain included

(Cherry and Lin, 2003)

- Introduction
- Proposed phrase alignment strategy
- Experimental results
 - Data used
 - Partial results: phrase alignment
 - Complete AER results
- Discussion
- Further research

Data used

Verbmobil Spa-Eng corpus 30 K sentences

	words	vocab	singlet.	Lmax	Lavg
English	230 K	3.2 K	39 %	66	7.6
Spanish	220 K	5.0 K	43 %	66	7.3

Preprocessing

- Normalization of contracted forms we've=we have / del=de el
- Tagging and base form Eng:TnT + wnmorph / Spa:maco+ relax
- Date and time expressions
- No punctuation
- Evaluation scheme with AER
 - Dev. + test sets: 100 + 400 sentences
 - Manual alignment (80% Sure, 20% Poss) stress on Recall

Partial results: phrase alignment

Results before word alignment

	Recall	Precision
Verbs $\phi^2 < 8$	8.07	99.02
Verbs $\phi^2 < 10$	9.00	99.12
Verbs ϕ^2 < 15	9.68	98.69
Idioms $\phi^2 < 5$	2.01	98.48
Idioms $\phi^2 < 10$	3.06	99.00
Idioms ϕ^2 < 15	3.50	97.41

Straightforward approach, but ...

- About 10% Recall at nearly no Precision cost
- Complementary links between Verbs and Idioms
- Complexity reduction for word alignment algorithm

Complete AER results

	Recall	Precision	AER
giza++ eng2spa	76.99	93.15	15.51
giza++ spa2eng	78.75	94.19	13.94
giza++ union	84.47	90.85	12.30
giza++ intersection	71.27	97.58	17.52

union: precision loss, but very high recall

Complete AER results

	Recall	Precision	AER
giza++ eng2spa	76.99	93.15	15.51
giza++ spa2eng	78.75	94.19	13.94
giza++ union	84.47	90.85	12.30
giza++ intersection	71.27	97.58	17.52
one-to-one word aligner	72.56	96.69	16.96

- union: precision loss, but very high recall
- intersection vs. one-to-one aligner

Complete AER results

	Recall	Precision	AER
giza++ eng2spa	76.99	93.15	15.51
giza++ spa2eng	78.75	94.19	13.94
giza++ union	84.47	90.85	12.30
giza++ intersection	71.27	97.58	17.52
one-to-one word aligner	72.56	96.69	16.96
phrase aligner ϕ^2 < 10	76.31	97.48	13.36
phrase aligner ϕ^2 < 15	76.88	97.35	13.20

- intersection vs. one-to-one aligner
- union: precision loss, but very high recall
- proposed: high-precision, much higher recall
- phrase alignment is accurate and helps word alignment algorithm to perform better

- Introduction
- Proposed phrase alignment strategy
- Experimental results
- Discussion
- Further research

Discussion

- Promising results
 - competitive results still making small use of ling.
 knowledge
 - open to new knowledge sources
- Evaluation in translation task
- Evaluation with other corpora

- Introduction
- Proposed phrase alignment strategy
- Experimental results
- Discussion
- Further research

Further research

Further research

- Postprocessing techniques
- Extension of phrase detection rules
 - 'Gapped' structures

	Recall	Precision	AER
phrase aligner ϕ^2 < 15	76.88	97.35	13.20
+ Gapped verbs	77.67	97.55	12.85

Ambiguity in classifying detected phrases
 numbers, times, different head verbs,...

Training data reduction

Thanks for attention

Centre de Tecnologies i Aplicacions del Llenguatge i la Parla TALP Research Center Universitat Politècnica de Catalunya (UPC) Barcelona

IWSLT'04 – Kyoto (Japan)

Oct 1st, 2004