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Spoken Language Translation via Concepts
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Spoken Language Translation via Concepts

!S!

QUERY SUBJECT PLACEWELLNESS

Is he anywhere else besides his abdomen

Natural Language 

Understanding

PRON

除了除了除了除了 他的他的他的他的腹部腹部腹部腹部 在其他任何地方在其他任何地方在其他任何地方在其他任何地方 他他他他 流血流血流血流血 吗吗吗吗
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Concept-based Speech Translation

� Language-independent representation of intended 

meanings

� Parsed from source language

� Organized in a language-dependent tree-structure

� Comparable to interlingua

� More flexible meaning preservation

� Wider sentence coverage

� Easier portability between different domains

� Design and selection of concepts

� Generation of concepts

ConceptsConcepts

MeritsMerits

ChallengesChallenges
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Natural Concept Generation (NCG)

� Correct set of concepts in target language

� Appropriate order of concepts in target language

� Statistical model-based generation

� Trained on Maximum-Entropy models

� Design of generation procedure

� Generation of concept sequences

� Transformation of semantic parse tree

� Selection of features

Purpose

Approaches

Challenges
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Statistical NCG on Sequence Level

QUERY PRON WEAPONPOSSESS

QUERYPRON WEAPONPOSSESS

English

Chinese
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Statistical NCG on Sequence Level
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Statistical NCG on Sequence Level (Cont.)
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Model Training by Maximizing Entropy
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Structural Concept Sequence Generation

Traverse the semantic parse tree in a bottom-up left-to-right breath-first 

mode 

Traverse the semantic parse tree in a bottom-up left-to-right breath-first 

mode 

For each un-processed concept unit on a parse tree, generate an optimal 

concept unit in target language via the procedure

For each un-processed concept unit on a parse tree, generate an optimal 

concept unit in target language via the procedure

Repeat until all units in the parse tree in the source language are processed Repeat until all units in the parse tree in the source language are processed 

!S!

ADV ACTION-VERB PLACE

swiftness go-away place

!S!

ACTION-VERB BE ADV

go-away art place swiftness

leave       the      building          quickly赶快赶快赶快赶快 离开离开离开离开 大楼大楼大楼大楼
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Feature Selection in Maximum-Entropy-

based Statistical NCG
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� new features derived from both source language and target language

� Trained on parallel tree-bank

� Strengthen the link between source language and target language
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Conciseness vs. Informativity of Concepts

ConcisenessConciseness

InformativityInformativity

• Define minimum number of distinct concepts 

• Reduce labor-extensive, time-consuming 

annotation process

• Improve NLU parsing

• Define concepts as informative as possible

• Concept generation largely relies on the 

sufficient information provided by each 

concept

• Improve NCG
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Examples of NCG with too Concise Concepts

WHQ SUBJECT

What did    you     eat     yesterday

AUX ACTION TIME

WHQSUBJECT

你你你你 昨天昨天昨天昨天 吃了吃了吃了吃了 什么什么什么什么

ACTIONTIME

�

WHQ SUBJECT

Where did you   eat    yesterday

AUX ACTION TIME

WHQSUBJECT

你你你你 昨天昨天昨天昨天 吃吃吃吃 在哪里在哪里在哪里在哪里

ACTIONTIME

�

� Two input English sentences with SAME set and order of concepts generate two 

DIFFERENT concept sequences

� The concept WHQ is too concise that it is not informative enough to discriminate 

the different generation behavior between (WHQ, what) and (WHQ, where)

� Features of                                          and        not helpful
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Using both Concept & Word Information

WHQ SUBJECT

What did    you     eat     yesterday

AUX ACTION TIME

WHQSUBJECT

你你你你 昨天昨天昨天昨天 吃了吃了吃了吃了 什么什么什么什么

ACTIONTIME

WHQ SUBJECT

Where did you   eat    yesterday

AUX ACTION TIME

WHQSUBJECT

你你你你 昨天昨天昨天昨天 吃吃吃吃 在哪里在哪里在哪里在哪里

ACTIONTIME

Concept information only

WHQ-what SUBJECT

What did    you     eat     yesterday

AUX ACTION TIME

WHQ-whatSUBJECT

你你你你 昨天昨天昨天昨天 吃了吃了吃了吃了 什么什么什么什么

ACTIONTIME

WHQ-where SUBJECT

Where did you    eat       yesterday

AUX ACTION TIME

WHQ-whereSUBJECT

你你你你 昨天昨天昨天昨天 在哪里在哪里在哪里在哪里 吃的吃的吃的吃的

ACTIONTIME

�

�

�

�

Concept & Word information
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Features using both Concept & Word Information
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Multiple Feature Selection

ProblemProblem

StrategyStrategy

� Sparser data because of higher dimensional features

� Additional sets of features in ME-based concept generation 

� Multiple sets of features represent context information in 

both the source and the target language at different levels 

ExampleExample Feature A:

Feature B:
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Experimental Setup

3000 Vocabulary size

medical  and force protectionDomain 

10,000 annotated parallel sentencesCorpora 

68Size of Concept Set

English – Chinese (Mandarin)Language Pair 

statistical interlingua-based 

speech translation
MT Method
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Experiments on ME-based Statistical NCG

DescriptionDescription
� Evaluate on primary concept sequences that represents the 

top-layer concepts in a semantic parser tree

� Concept sequences containing only one concept are removed 

as they are easy to generate 

� Specific set of parallel concept sequences that contain the 

same set of concepts in both languages 

� 5600 concept sequences are selected, 80% for training and 

20% for testing

� Random partitioning of training and test set for 100 times

� Average error rates were recorded

� Worst-case test: sequences appear in the training corpus are 

not allowed to appear in the test corpus

� Normal-case test: sequences appear in the training corpus 

may appear in the test corpus
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ME-NCG Experiments with Forward Models

0.7% / 0.4%

0.7% / 0.4%

6.2% / 3.5%

14.0% / 8.8% 

Training set

(SER / CER)

20.2% / 13.1%
+ concept-word 

features

17.4% / 11.4%
+ multiple feature 

selection 

21.7% / 14.1%
+ feature on parallel 

corpora 

28.0% / 18.9% 

Test set

(SER / CER)

Baseline NCG with 

basic feature  

NCG Methods

� A concept sequence is considered to have an error during measurement of sequence 
error rate if one or more errors occur in this sequence 

� Concept error rate, on the other hand, evaluates concept errors in concept sequences 
such as substitution, deletion and insertion 
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ME-NCG Experiments with Forward-

Backward Models

0.5% / 0.3%

0.5% / 0.3%

5.7% / 3.2%

9.1% / 5.5% 

Training set

(SER / CER)

17.7% / 11.5%
+ concept-word 

features

15.8% / 10.4%
+ multiple feature 

selection 

17.8% / 11.6%
+ feature on parallel 

corpora 

24.4% / 16.4% 

Test set

(SER / CER)

Baseline NCG with 

basic feature  

NCG Methods
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Experiment on Statistical Interlingua-based S2S

0.437

0.536

0.4890.469Speech-to-Text

0.578 0.605Text-to-Text 

Translation Methods

Bleu metric (proposed by Kishore et. al.) measures MT performance 

by evaluating n-gram accuracy with a brevity penalty
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Summary

Attack the problems of feature selection during maximum-entropy-

based model training and concept generation 

New concept-word features proposed that exploit both information at 

both concept level and word level

Multiple feature selection algorithm combines different features in 

maximum-entropy models to alleviate data-sparseness-caused over-

training problem 

Significant improvements are achieved in both concept sequence 

generation test and speech translation experiments 
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