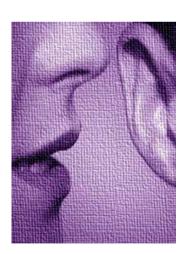
On Feature Selection in Maximum Entropy Approach to Statistical Conceptbased Speech-to-Speech Translation

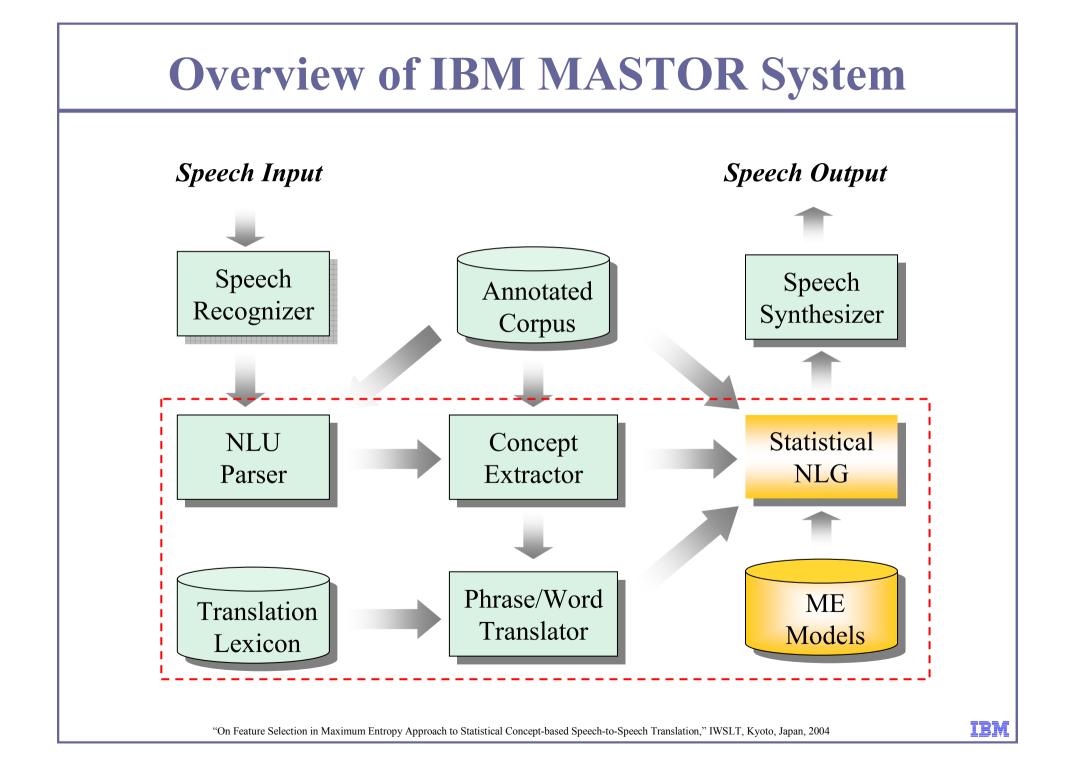
Authored by:Liang Gu and Yuqing GaoPresented by:Ruhi Sarikaya

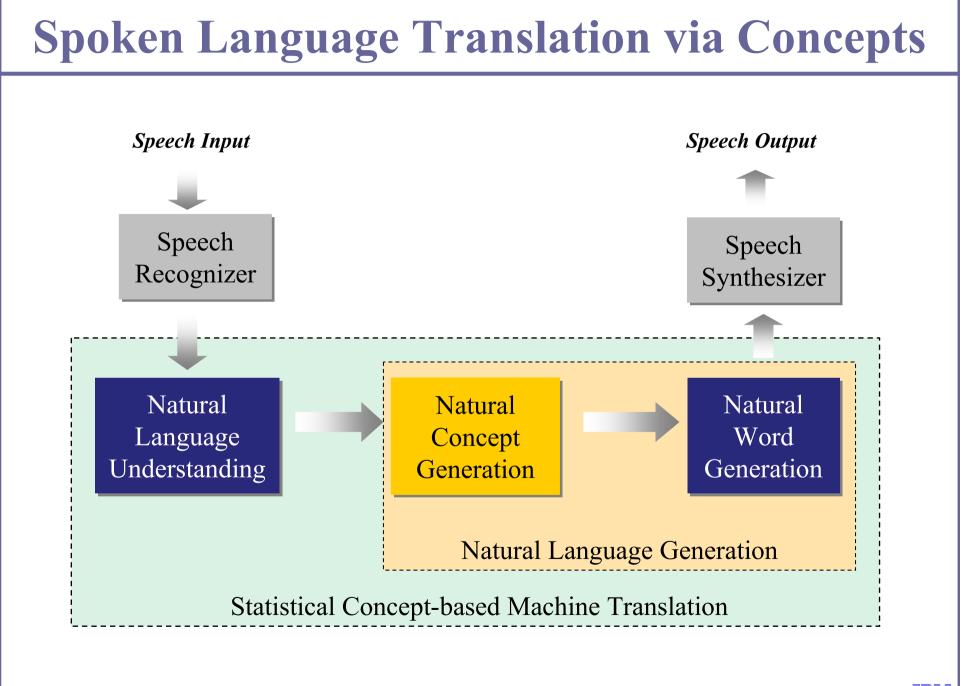


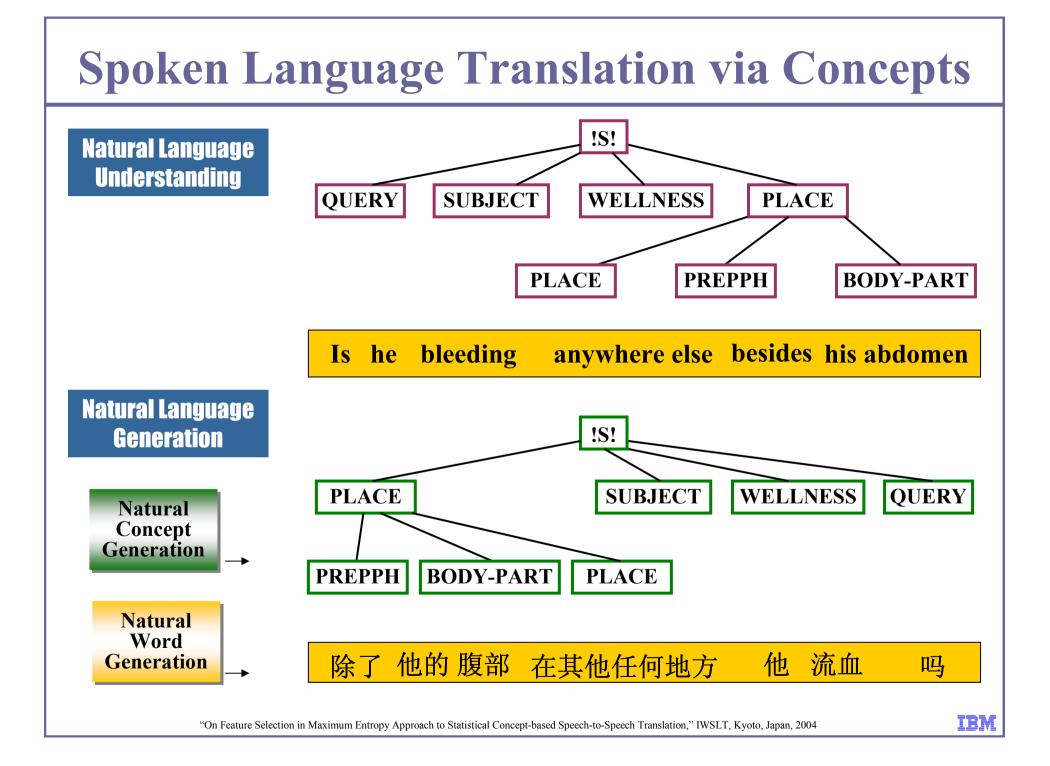
October 1st, 2004

Outline Statistical Concept-based Speech Translation Natural Concept Generation (NCG) Feature Selection in Statistical NCG Conciseness vs. Informativity of Concepts Features using both Concept & Word Information **Multiple Feature Selection** *

Section 2 Sec







Concept-based Speech Translation

Concepts

*

*

**

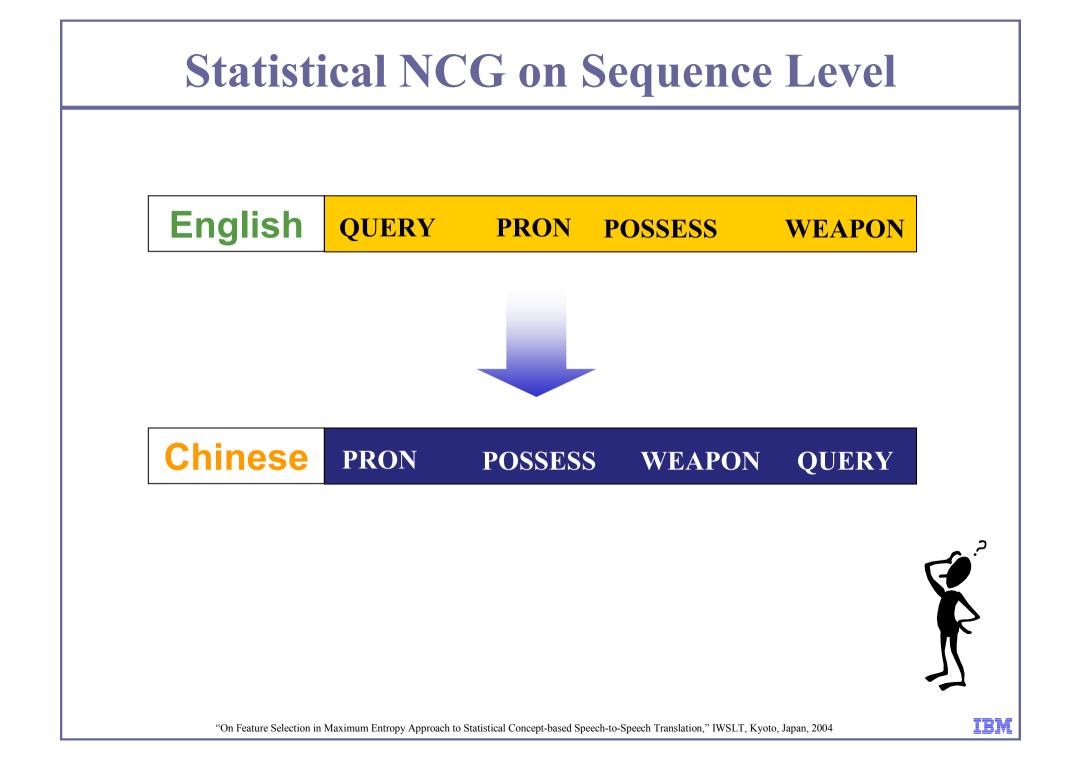
- Language-independent representation of intended meanings
- Parsed from source language
- Organized in a language-dependent tree-structure
- Comparable to interlingua
- More flexible meaning preservation
- Wider sentence coverage
- Easier portability between different domains

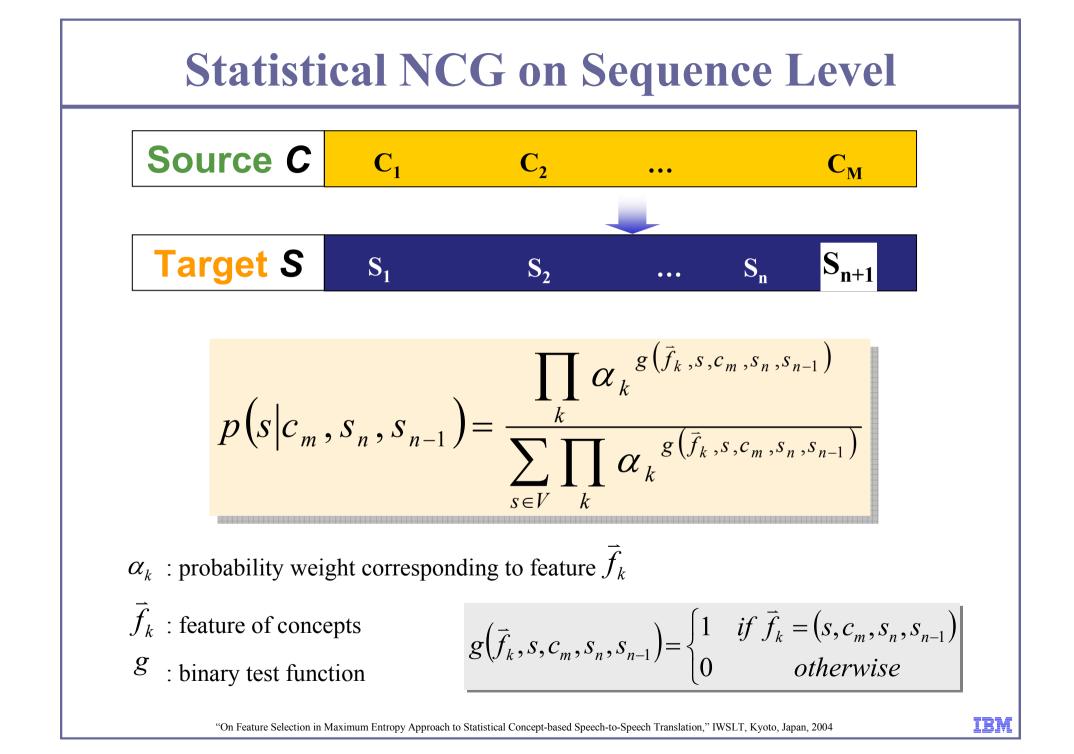
Challenges

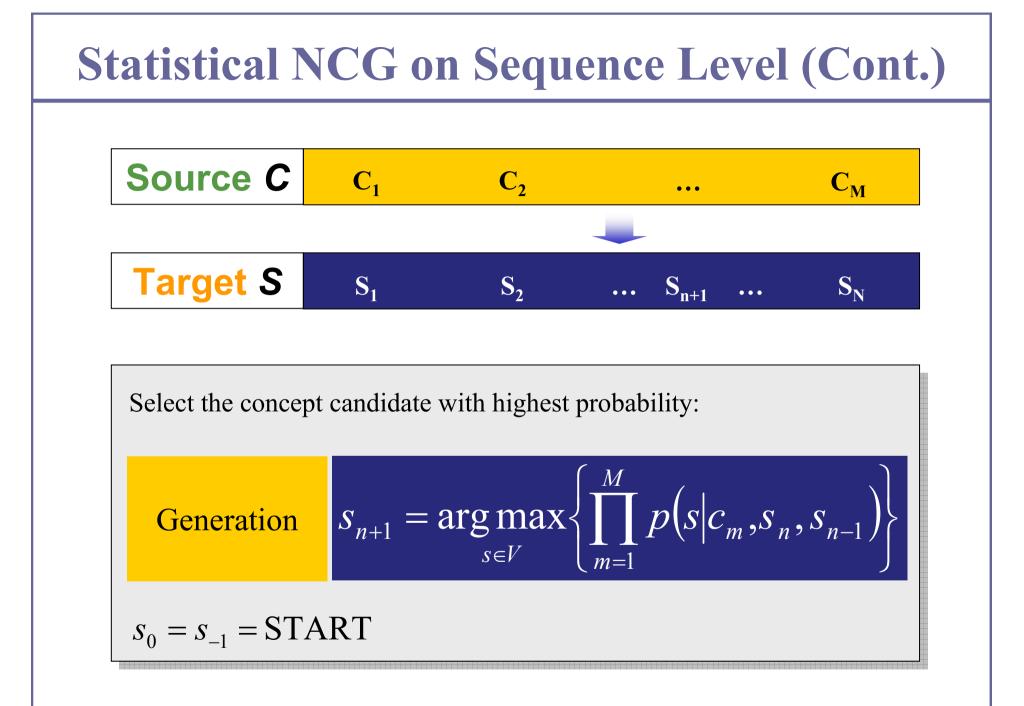
Merits

- Design and selection of concepts
- Generation of concepts

Natural Concept Generation (NCG) Correct set of concepts in target language * Purpose Appropriate order of concepts in target language * Statistical model-based generation * Approaches Trained on Maximum-Entropy models Design of generation procedure • Challenges Generation of concept sequences Transformation of semantic parse tree Selection of features







Model Training by Maximizing Entropy $p(s|c_{m}, s_{n}, s_{n-1}) = \frac{\prod_{k} \alpha_{k}^{g(\bar{f}_{k}, s, c_{m}, s_{n}, s_{n-1})}}{\sum_{k} \prod_{k} \alpha_{k}^{g(\bar{f}_{k}, s, c_{m}, s_{n}, s_{n-1})}}$

$$\alpha_k = \arg \max_{\alpha} \sum_{l=1}^{L} \sum_{s \in q_l} \sum_m \log \left[p(s|c_m, s_n, s_{n-1}) \right]$$

 $s \in V$

 $Q = \{q_l, l \le L\}$: total set of concept sequences

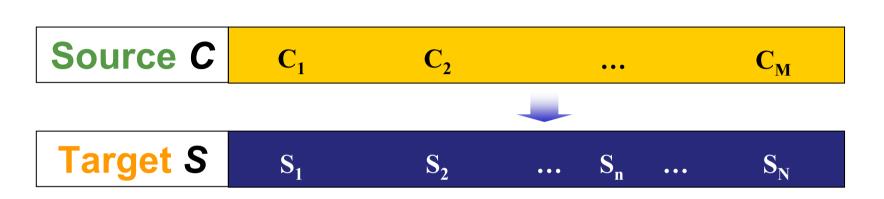
Structural Concept Sequence Generation !S! !S ADV **ACTION-VERB** PLACE **ACTION-VERB ADV** BE swiftness swiftness place go-away place go-away art the building quickly 赶快 大楼 leave 离开

Traverse the semantic parse tree in a bottom-up left-to-right breath-first mode

For each un-processed concept unit on a parse tree, generate an optimal concept unit in target language via the procedure

Repeat until all units in the parse tree in the source language are processed

Feature Selection in Maximum-Entropybased Statistical NCG



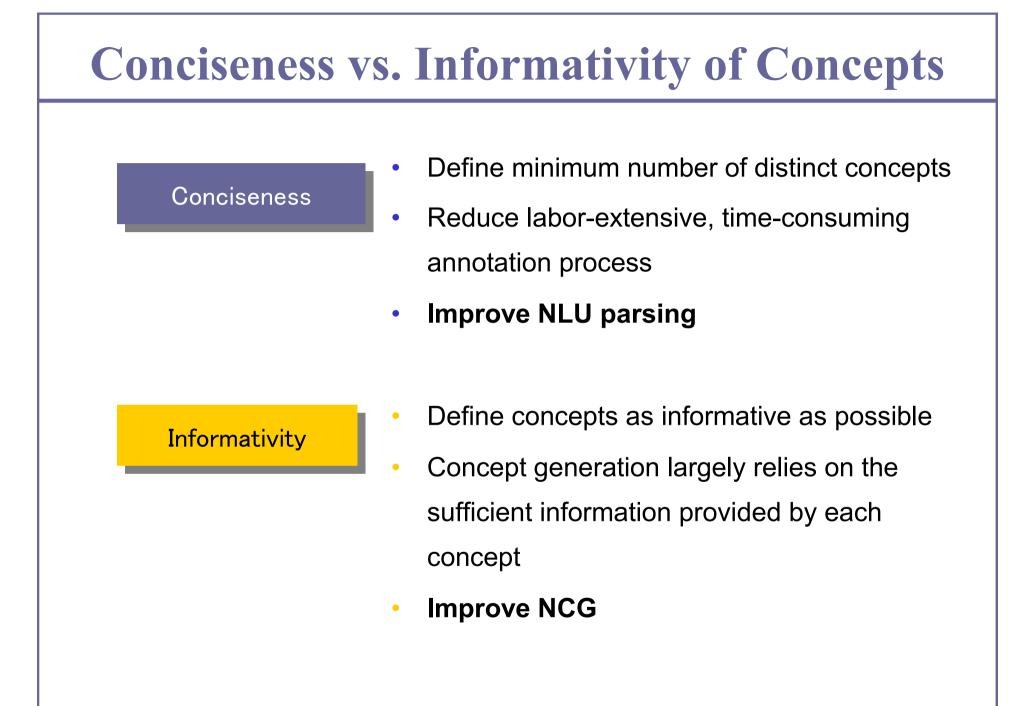
Baseline Features

$$\vec{f}_{k}^{(4)} = \left(s_{+1}^{k}, c^{k}, s_{0}^{k}, s_{-1}^{k}\right)$$

Augmented Features on Parallel Corpora

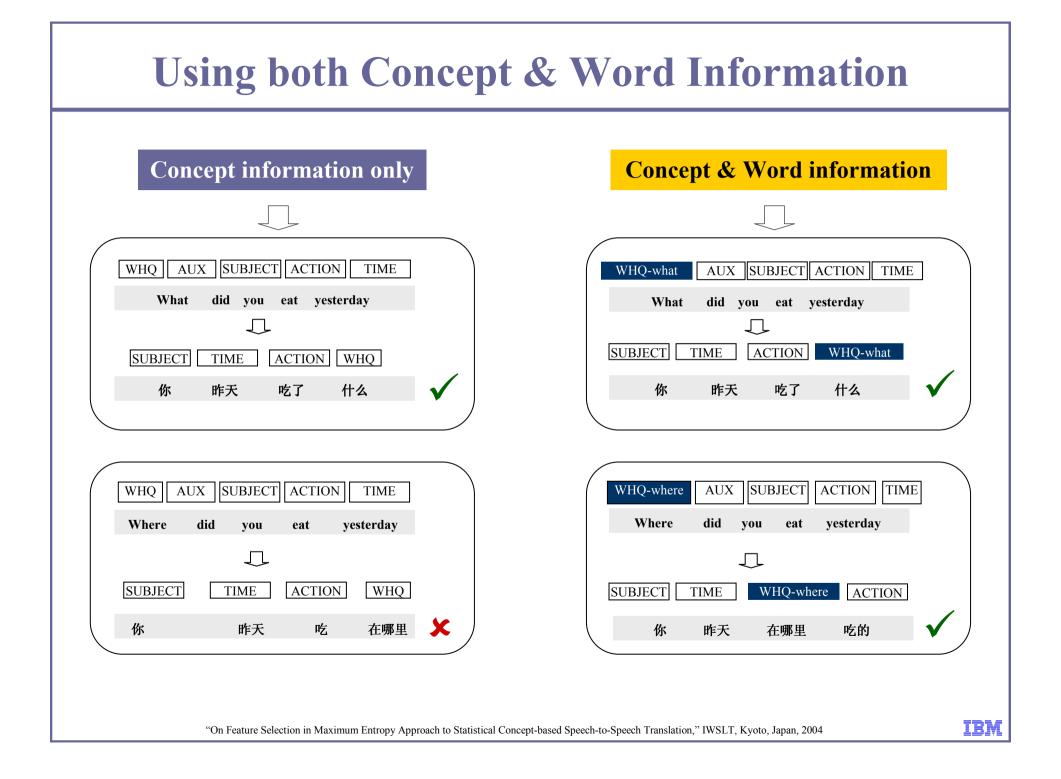
$$\vec{f}_{k}^{(5)} = \left(s_{+1}^{k}, c_{0}^{k}, c_{+1}^{k}, s_{0}^{k}, s_{-1}^{k}\right)$$

- new features derived from both source language and target language
- Trained on parallel tree-bank
- Strengthen the link between source language and target language



Examples of NCG with too Concise Concepts					
WHQ AUX SUBJECT ACTION TIME What did you eat yesterday	WHQ AUX SUBJECT ACTION TIME Where did you eat yesterday				
SUBJECT TIME ACTION WHQ 你昨天吃了什么 ✓	↓ SUBJECT TIME ACTION WHQ 你 昨天 吃 在哪里 ↓				

- Two input English sentences with SAME set and order of concepts generate two
 DIFFERENT concept sequences
- The concept WHQ is **too concise** that it is **not informative enough** to discriminate the different generation behavior between (WHQ, what) and (WHQ, where)
- Features of $\vec{f}_k^{(4)} = \left(s_{+1}^k, c^k, s_0^k, s_{-1}^k\right)$ and $\vec{f}_k^{(5)} = \left(s_{+1}^k, c_0^k, c_{+1}^k, s_0^k, s_{-1}^k\right)$ not helpful



Features using both Concept & Word Information

Concept Sequence:
$$C = \{c_1, c_1, \cdots, c_M\}$$

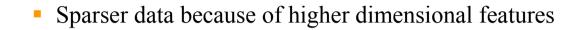
Word Sequence: $W = \{\overline{w}_1, \overline{w}_2, \cdots, \overline{w}_M\}$

$$p(s|c_{m}, c_{m+1}, \overline{w}_{m}, \overline{w}_{m+1}, s_{n}, s_{n-1}) = \frac{\prod_{k} \alpha_{k}^{g(\overline{f}_{k}^{(7)}, s, c_{m}, c_{m+1}, \overline{w}_{m}, \overline{w}_{m+1}, s_{n}, s_{n-1})}{\sum_{s \in V} \prod_{k} \alpha_{k}^{g(\overline{f}_{k}^{(7)}, s, c_{m}, c_{m+1}, \overline{w}_{m}, \overline{w}_{m+1}, s_{n}, s_{n-1})}$$

$$\alpha_{k} = \arg \max_{\alpha} \sum_{l=1}^{L} \sum_{s \in q_{l}} \sum_{m=1}^{M-1} \log \left[p\left(s | c_{m}, c_{m+1}, \overline{w}_{m}, \overline{w}_{m+1}, s_{n}, s_{n-1}\right) \right]$$

Optimized on parallel treebank: $QQ = \{u_l, v_l \mid l \le l \le L\}$

Multiple Feature Selection



- Additional sets of features in ME-based concept generation
- Multiple sets of features represent context information in both the source and the target language at different levels

Example

Problem

Strategy

Feature A: $\overline{f}_{k}^{(5)} = \left(s_{+1}^{k}, c_{0}^{k}, c_{+1}^{k}, s_{0}^{k}, s_{-1}^{k}\right)$ Feature B: $\overline{f}_{k}^{(7)} = \left(s_{+1}^{k}, c_{0}^{k}, c_{+1}^{k}, \overline{w}_{0}^{k}, \overline{w}_{+1}^{k}, s_{0}^{k}, s_{-1}^{k}\right)$ $\alpha_{k} = \arg \max_{\alpha} \sum_{l=1}^{L} \sum_{s \in q_{l}} \sum_{m=1}^{M-1} \begin{cases} \log \frac{\prod_{k} \alpha_{k}^{g_{k}(\overline{f}_{k}^{(5)}, s, c_{m}, c_{m+1}, s_{n}, s_{n-1})}{\sum_{s \in V} \prod_{k} \alpha_{k}^{g_{k}(\overline{f}_{k}^{(5)}, s, c_{m}, c_{m+1}, s_{n}, s_{n-1})} \\ + \log \frac{\prod_{k} \alpha_{k}^{g_{k}(\overline{f}_{k}^{(7)}, s, c_{m}, c_{m+1}, \overline{w}_{m}, \overline{w}_{m+1}, s_{n}, s_{n-1})}{\sum_{s \in V} \prod_{k} \alpha_{k}^{g_{k}(\overline{f}_{k}^{(7)}, s, c_{m}, c_{m+1}, \overline{w}_{m}, \overline{w}_{m+1}, s_{n}, s_{n-1})} \end{cases}$

Experimental Setup

MT Method	statistical interlingua-based speech translation
Language Pair	English – Chinese (Mandarin)
Domain	medical and force protection
Corpora	10,000 annotated parallel sentences
Vocabulary size	3000
Size of Concept Set	68

Experiments on ME-based Statistical NCG

Description

- Evaluate on primary concept sequences that represents the top-layer concepts in a semantic parser tree
- Concept sequences containing only one concept are removed as they are easy to generate
- Specific set of parallel concept sequences that contain the same set of concepts in both languages
- 5600 concept sequences are selected, 80% for training and 20% for testing
- Random partitioning of training and test set for 100 times
- Average error rates were recorded
- Worst-case test: sequences appear in the training corpus are not allowed to appear in the test corpus
- Normal-case test: sequences appear in the training corpus may appear in the test corpus

ME-NCG Experiments with Forward Models

NCG Methods	Training set (SER / CER)	Test set (SER / CER)
Baseline NCG with basic feature $\vec{f}_k^{(4)}$	14.0% / 8.8%	28.0% / 18.9%
+ feature on parallel corpora $\vec{f}_k^{(5)}$	6.2% / 3.5%	21.7% / 14.1%
+ concept-word features $\vec{f}_k^{(7)}$	0.7% / 0.4%	20.2% / 13.1%
+ multiple feature selection $(\bar{f}_k^{(5)} + \bar{f}_k^{(7)}) \bar{f}_k^{(4)}$	0.7% / 0.4%	17.4% / 11.4%

- A concept sequence is considered to have an error during measurement of sequence error rate if one or more errors occur in this sequence
- Concept error rate, on the other hand, evaluates concept errors in concept sequences such as substitution, deletion and insertion

ME-NCG Experiments with Forward-Backward Models

NCG Methods	Training set (SER / CER)	Test set (SER / CER)
Baseline NCG with basic feature $\bar{f}_k^{(4)}$	9.1% / 5.5%	24.4% / 16.4%
+ feature on parallel corpora $\overline{f}_k^{(5)}$	5.7% / 3.2%	17.8% / 11.6%
+ concept-word features $\overline{f}_k^{(7)}$	0.5% / 0.3%	17.7% / 11.5%
+ multiple feature selection $(\vec{f}_k^{(5)} + \vec{f}_k^{(7)})\vec{f}_k^{(4)}$	0.5% / 0.3%	15.8% / 10.4%

Ex	Experiment on Statistical Interlingua-based S2S				
	Translation Methods	$ar{f}_k^{(4)}$	$\overline{f}_k^{(5)}$	$\left(\vec{f}_k^{(5)} + \vec{f}_k^{(7)}\right)$	
	Text-to-Text	0.536	0.578	0.605	
	Speech-to-Text	0.437	0.469	0.489	

Bleu metric (proposed by Kishore et. al.) measures MT performance by evaluating n-gram accuracy with a brevity penalty

$$Bleu = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

 p_n : n-gram precision rate W_n : n-gram weight BP: Brevity penalty

Summary

- Attack the problems of feature selection during maximum-entropybased model training and concept generation
- New concept-word features proposed that exploit both information at both concept level and word level
- Multiple feature selection algorithm combines different features in maximum-entropy models to alleviate data-sparseness-caused overtraining problem
- Significant improvements are achieved in both concept sequence generation test and speech translation experiments