MULTI-LINGUAL SPEECH RECOGNITION SYSTEM FOR SPEECH-TO-SPEECH TRANSLATION

ATR Spoken Language Translation Research Laboratories, Kyoto, Japan

IWSLT Workshop, Oct. 1, 2004
OUTLINE

- S2ST and Speech Recognition
- Overview of the ATR ASR System
 - MDL-SSS Acoustic Model
 - Multi-Dimensional Class N-gram LM
- BTEC Corpus Description
- Evaluation:
 - Japanese ASR
 - English ASR
 - Chinese ASR
- Conclusion
Speech-To-Speech Translation System

Speech Recognition Module:
- Provides text input for translation module
- Can provide additional information:
 - Word POS tags
 - Word Confidence scores
 - Out-of-domain utterance control
Minimum Description Length (MDL) Criterion for Model Selection

\[L_i(x) = -\log P(x \mid \hat{\theta}^{(i)}) + \frac{\alpha_i}{2} \log N_T + \log I \]

- **log likelihood**
- **# of parameters**
- **x log #of samples**

\[x = \{x_1, \ldots, x_{N_T}\} : \text{observation data} \]
\[\{1, \ldots, i, \ldots, I\} : \text{a set of models} \]
\[\alpha_i : \text{the number of free parameters of model } i \]
\[\hat{\theta}^{(i)} : \text{the maximum likelihood estimate of model } i \]
Gain Function of MDL-SSS

A gain function can be derived from the difference of the MDL criteria between before splitting and after splitting.

For contextual splitting:

\[G_{c}^{(MDL)}(S_i) = -G_{c}^{(ML)}(S_i) + C_{c} \frac{\alpha' - \alpha}{2} \log N_{all} \]

For temporal splitting:

\[G_{t}^{(MDL)}(S_i) = -G_{t}^{(ML)}(S_i) + C_{t} \left\{ \frac{\alpha'}{2} \log N'_{all} - \frac{\alpha}{2} \log N_{all} \right\} \]

\(C_{c}, C_{t} \): adjust differences between the 1st term and the 2nd term.
MDL-SSS Algorithm

Initial state

For all states

Temporal splitting

Contextual splitting

Select the splitting with min criterion, or

\[G_t^{(MDL)} \] \quad or \quad \[G_c^{(MDL)} \]

\[G_t^{(MDL)} > 0 \quad \text{and} \quad G_c^{(MDL)} > 0 \] ?

No

Parameter re-estimation

Yes

Finished

"HMnet"

(T. Jitsuhiro et al., 2004)
Multi-Class N-gram LM

Conventional Class 2-gram

\[P(w_i \mid w_{i-1}) \approx P(c(w_i) \mid c(w_{i-1}))P(w_i \mid c(w_i)) \]

Class assignment of \textit{an} and \textit{a}:
- Same class -> less accurate
- Different class -> less reliable

This is an animal.

a bird.

Multiple class assignment depends on direction:

\[P(c^f(w_i) \mid c^p(w_{i-1}))P(w_i \mid c^f(w_i)) \]

(H. Yamamoto et al., 1999)
Basic Travel Expression Corpus (BTEC)

- Covers utterances in the travel domain:
 - Sentences extracted from bi-lingual phrase-books.
 - Revised to reduce context dependence.
 - Out of domain and special sentences removed.
- Divided into 4 parts – BTEC 1,2,3 and 4:
 - In total: ~600 000 sentences
- Available in 3 languages:
 - Japanese
 - English
 - Chinese
Training data for acoustic models:
- Pseudo-dialogs: Travel Arrangement (TRA)
- Phonetic balanced sentences (BLA)
- Total 30 hours
- 407 speakers

Training data for language models:
- BTEC: 160k sentences with 1.2 M words
- 37K word dictionary

Evaluation data
- BTEC test set 01: 510 sentences
- 20 males and 20 females
Japanese ASR - Performance

Word accuracy [%]

of states

- ML-SSS (3 states max)
- ML-SSS (4 states max)
- MDL-SSS
English ASR - Experiment

- Training data for acoustic models:
 - Wall Street Journal (WSJ) corpus
 - 284 speakers (WSJ-284)
 - Total ~60 hours
- Training data for language models:
 - BTEC: 160k sentences with 1.2 M words
 - 22K word dictionary
- Evaluation data
 - BTEC test set 01: 200 sentences
 - 10 males and 10 females
English ASR - Performance

Tri-gram rescoring
- No
- Yes

Language Model
- Word bi-gram
- Multi-class bi-gram

Word Accuracy (%)
- Word bi-gram: No - 87, Yes - 91
- Multi-class bi-gram: No - 88, Yes - 94
Chinese ASR - Experiment

- Basic subword units: 21 Initials and 37 Finals
- Training data for acoustic models:
 - ATR phonetically rich Putonghua (General domain)
 - 140 speakers with a total of 54 hours of speech.
- Training data for language models:
 - 200k BTEC Chinese sentences
 - 16.5k word dictionary
- Evaluation data:
 - BTEC: 12 000 sentences
 - 20 males and 20 females
Chinese ASR - Results

- Acoustic model
 - ML-SSS HMnet
 - 1200 states
- Language model
 - Multi-class bi-gram
 - Tri-gram

Chinese character Accuracy (%)

- Male
- Female
- Total

- Char. Acc.
Conclusions

- ATR multi-lingual ASR system:
 - Uses advanced modeling technologies – MDL-SSS, Multi-class N-gram, etc.
 - Achieves high performance (about 8% WER) in all languages: Japanese, English and Chinese

- Ongoing development work:
 - Implementation of noise and channel robust techniques
 - Adaptation to various accents of Japanese, English and Chinese
 - Field trial in real environment