Phrase Reordering for Statistical Machine Translation Based on Predicate-Argument Structure

Mamoru Komachi, Yuji Matsumoto
Nara Institute of Science and Technology
Masaaki Nagata
NTT Communication Science Laboratories

Overview of NAIST-NTT System

Improve translation model by phrase reordering

Motivation

 Translation model using syntactic and semantic information has not yet succeeded

Improve statistical machine translation by using predicate-argument structure

 Improve distortion model between language pairs with different word orders

Improve word alignment by phrase reordering

Outline

- Overview
- Phrase Reordering by Predicateargument Structure
- Experiments and Results
- Discussions
- Conclusions
- Future Work

Phrase Reordering by Predicate-argument Structure

- Phrase reordering by morphological analysis (Niessen and Ney, 2001)
- Phrase reordering by parsing (Collins et al., 2005)

5

Predicate-argument Structure Analyzer: SynCha

- Predicate-argument structure analyzer based on (lida et al., 2006) and (Komachi et al., 2006)
 - Identify predicates (verb/adjective/eventdenoting noun) and their arguments
 - Trained on NAIST Text Corpus http://cl.naist.jp/nldata/corpus/
 - Can cope with zero-anaphora and ellipsis
- Achieves F-score 0.8 for arguments within a sentence

Predicate-argument Structure Analysis Steps

Phrase Reordering Steps

- Find predicates(verb/adjective/eventdenoting noun)
- Use heuristics to match English word order

Preprocessing

- Japanese side
 - Morphological analyzer/Tokenizer: ChaSen
 - Dependency parser: CaboCha
 - Predicate-argument structure: SynCha
- English side
 - Tokenizer: tokenizer.sed (LDC)
 - Morphological analyzer: MXPOST
 - All English words were lowercased for training

Aligning Training Corpus

 Manually aligned 45,909 sentence pairs out of 39,953 conversations

Training Corpus Statistics

	# of sent.
Improve alignment	33,874
Degrade alignment	7,959
No change	4,076
Total	45,909

	# of sent.
Reordered	18,539
Contain crossing	39,979

Add each pair to training corpus

Learn word alignment by GIZA++

Experiments

- WMT 2006 shared task baseline system trained on normal order corpus with default parameters
- Baseline system trained on preprocessed corpus with default parameters
- Baseline system trained on preprocessed corpus with parameter optimization by a minimum error rate training tool (Venugopal, 2005)

Translation Model and Language Model

- Translation model
 - GIZA++ (Och and Ney, 2003)
- Language model
 - Back-off word trigram model trained by Palmkit (Ito, 2002)
- Decoder
 - WMT 2006 shared task baseline system (Pharaoh)

Minimum Error Rate Training (MERT)

- Optimize translation parameters for Pharaoh decoder
 - Phrase translation probability (JE/EJ)
 - Lexical translation probability (JE/EJ)
 - Phrase penalty
 - Phrase distortion probability
- Trained with 500 normal order sentences

Results

	System	BLEU	NIST
ASR 1-BEST	Baseline	0.1081	4.3555
	Proposed (w/o MERT)	0.1366	4.8438
	Proposed (w/ MERT)	0.1311	4.8372
Correct recognition	Baseline	0.1170	4.7078
	Proposed (w/o MERT)	0.1459	5.3649
	Proposed (w/ MERT)	0.1431	5.2105

Results for the Evaluation Campaign

- While it had high accuracy on translation of content words, it had poor results on individual word translation
 - ASR: BLEU 12/14, NIST 11/14, METEOR 6/14
 - Correct Recognition: BLEU 12/14, NIST 10/14, METEOR 7/14
 - Pretty high WER

Discussion

- Better accuracy over the baseline system
 - Improve translation model by phase reordering
- Degrade accuracy by MERT
 - Could not find a reason yet
 - Could be explained by the fact that we did not put any constraints on reordered sentences (They may be ungrammatical on Japanese side)
- Predicate-argument structure accuracy
 - SynCha is trained on newswire sources (not optimized for travel conversation)

Discussion (Cont.)

 Phrase alignment got worse by splitting a case marker from its dependent verb

Conclusions

- Present phrase reordering model based on predicate-argument structure
- The phrase reordering model improved translation accuracy over the baseline method

Future work

- Investigate the reason why MERT does not work
 - Make reordered corpus more grammatical (reorder only arguments)
- Use newswire sources to see the effect of correct predicate-argument structure
- Reorder sentences which have crossing alignments only
- Use verb clustering and map arguments automatically