The TALP Ngram-based SMT System for IWSLT 2006

Josep M. Crego, Adrià de Gispert, **Patrik Lambert**, Maxim Khalilov, Marta R. Costa-jussà, José B. Mariño, Rafael Banchs and José A.R. Fonollosa

> TALP Research Center Jordi Girona Salgado, 1-3 08034 Barcelona, Spain

IWSLT 2006, Kyoto

- 1 TALP Ngram-based Translation System
- 2 Tuple segmentation strategies
- Word ordering strategies
- 4 Experiments
- 5 Conclusions and Further Work

Participation in the IWSLT 2006 Evaluation

- Tasks
 - Arabic to English
 - Chinese to English
 - Italian to English
 - Japanese to English
- System
 - TALP-tuples (TALP Ngram-based SMT system)

Translation Model

The best translation hypothesis T, for a given source sentence S, is that which maximises a log-linear combination of 5 models:

$$\hat{\mathbf{T}} = \underset{\mathbf{T}}{\operatorname{arg max}} \sum_{m} \lambda_{m} h_{m}(\mathbf{T}, \mathbf{S})$$

Translation Model:
 N-gram language model of bilingual units (tuples)

$$p(\mathsf{T},\mathsf{S}) pprox \prod_{n} p((t,s)_n | (t,s)_{n-N+1},\ldots,(t,s)_{n-1})$$

Tuple extraction

Tuples are extracted from word alignment

- A unique, monotonous segmentation of each sentence pair is produced.
- No word in a tuple is aligned to words outside of it
- No smaller tuples can be extracted without violating the previous constraints

Additional feature functions

Additional feature functions:

- Target language model
- Word bonus model, giving a bonus proportional to the number of target words.
- Source-to-target and target-to-source lexicon models, which compute a lexical weight for each tuple, using IBM model 1 translation probabilities

Decoding

Decoding:

- freely available MARIE decoder [Crego et al., 2005]
 (beam search with hypothesis recombination, threshold and histogram pruning)
- no rescoring module (1-best output used)
- monotone and reordered search

Feature function weights optimization: Downhill Simplex Method

- 1 TALP Ngram-based Translation System
- Tuple segmentation strategies
 - Introduction
 - Linguistic Tuple Segmentation
- Word ordering strategies
- Experiments
- 5 Conclusions and Further Work

NULL-source tuples

Tuple extraction algorithm defines a unique set of tuples except whenever the resulting tuple contains no source word (NULL-source tuple).

These units cannot be allowed in decoding new sentences⇒ a hard decision must be taken regarding tuple segmentation

- Baseline criterion: IBM model 1 score for each possible tuple
- New criterion: entropy of Part-Of-Speech distributions

Linguistic tuple segmentation

Forward entropy

Probability of observing a certain Part-Of-Speech following the sequence of words defined by t_{i-1} and t_i :

$$p_{POS}^{f} = \frac{N(t_{i-1}, t_{i}, POS_{i+1})}{\sum_{POS'} N(t_{i-1}, t_{i}, POS'_{i+1})}$$

Entropy of the POS distribution in position i + 1 given (t_{i-1}, t_i) :

$$H_{POS}^f = -\sum_{POS} p_{POS}^f \log p_{POS}^f$$

Backward entropy

Similarly, calculate a "backward" entropy of POS distribution preceding (t_i, t_{i+1}) .

Linguistic tuple segmentation

if $H_{POS}^f > H_{POS}^b$, we have observed (t_{i-1}, t_i) in more grammatically different contexts than (t_i, t_{i+1}) .

 $\Rightarrow t_{i-1}$ and t_i tend to be more often connected than t_i and t_{i+1} , and should belong to the same translation tuple.

- 1 TALP Ngram-based Translation System
- 2 Tuple segmentation strategies
- Word ordering strategies
 - Tuple unfolding
 - Constrained reordered search
 - Reordering Patterns
- 4 Experiments
- **5** Conclusions and Further Work

Tuple unfolding

Before reordering search, extract tuples with an unfolding technique

Unfolding produces a different bilingual n-gram model with reordered source words. Advantages:

- Gives smaller tuples, thus easier to re-use
- Gives higher probability to bilingual n-grams with correct target language order

Constrained reordered search

Basic reordered search exploring all possibilities, with restrictions:

- Distortion limit (*m*): Any tuple is only allowed to be reordered within a limited distance (in number of source words).
- Reordering limit (j): Any translation path is only allowed to perform j reordering jumps.

for IWSLT 2006, given the average sentence length, we set $\emph{m}=5$ and $\emph{j}=3$ for all language pairs

When this word ordering strategy was applied, a simple word distance-based distortion model was added as an additional feature to the system.

Reordering patterns

Use a set of rewrite rules for Part-Of-Speech sequences to extend the monotonic search graph with reordering hypotheses

Pattern extraction

Pattern instances are automatically learnt in training from the crossed links found in tuples (in a way equivalent to unfolding)

Decision to prune out or use each pattern based on relative frequency:

$$p(t_1,...,t_n\mapsto i_1,...,i_n)=\frac{N(t_1,...,t_n\mapsto i_1,...,i_n)}{N(t_1,...,t_n)}$$

(this probability is not used in decoding. Only in training, to prune out some patterns)

- 1 TALP Ngram-based Translation System
- 2 Tuple segmentation strategies
- Word ordering strategies
- 4 Experiments
 - Description
 - Results
- 5 Conclusions and Further Work

Experiments description

- alignment: IBM model 4 union (GIZA++ [Och, 2000]), 50 classes (mkcls), lowercased
- bilingual and target language models: standard 4-gram models (SRILM [Stolcke, 2002])
- preprocessing: split sentences at dots (if equal number of dots)
- language-dependent preprocessing: see paper

official	test		ASRtest	
	BLEU	NIST	BLEU	NIST
Arabic→English				
P: m5j3	0.232	6.24	0.214	5.82
C1: rgraph	0.227	6.14	0.205	5.69
C2: m5j3 segIBM	0.227	6.06	0.210	5.63
C3: m5j3 lm20	0.225	6.13	0.205	5.71

official	test		ASRtest	
	BLEU	NIST	BLEU	NIST
Arabic→English				
P: m5j3	0.232	6.24	0.214	5.82
C1: rgraph	0.227	6.14	0.205	5.69
C2: m5j3 segIBM	0.227	6.06	0.210	5.63
C3: m5j3 lm20	0.225	6.13	0.205	5.71
Italian→English				
P: rgraph alem	0.333	7.75	0.282	6.87
C1: rgraph	0.331	7.63	0.278	6.75
C2: rgraph segIBM	0.332	7.64	0.273	6.71
C3: rgraph lm20	0.323	7.54	0.271	6.69

official	test		ASRtest	
	BLEU	NIST	BLEU	NIST
Arabic→English				
P: m5j3	0.232	6.24	0.214	5.82
Italian→English				
P: rgraph alem	0.333	7.75	0.282	6.87
Chinese→English				
P: m5j3	0.186	5.57	0.162	4.98
C1: rgraph	0.183	5.74	0.157	5.12

official	test		ASRtest	
	BLEU	NIST	BLEU	NIST
Arabic→English				
P: m5j3	0.232	6.24	0.214	5.82
Italian→English				
P: rgraph alem	0.333	7.75	0.282	6.87
Chinese→English				
P: m5j3	0.186	5.57	0.162	4.98
C1: rgraph	0.183	5.74	0.157	5.12
Japanese→English				
P: rgraph	0.146	5.27	0.137	4.94
C1: m5j3	0.152	5.18	0.141	4.89

Conclusions and further work

Basically two novel features were introduced in our system.

- Extension of monotonic search graph with reordered paths suggested by POS-tags-based patterns:
 - dramatic efficiency improvement (nearly as efficient as monotonic search)
 - outperforms constrained reordered search for Italian→English, achieves similar results for Chinese→English and Japanese→English and is slightly worse in Arabic→English
 - thus, these patterns don't capture long reordering (in this case, POS-tag-based patterns lead to sparseness problems)
 - further work should focus on pattern extraction for language pairs demanding long reorderings (e.g. syntax-based patterns)
- tuple segmentation based on POS entropy: yields a slight yet systematic improvement in translation quality

Other direction for further research: better integration of speech recognition output (word lattices, N-best lists)

