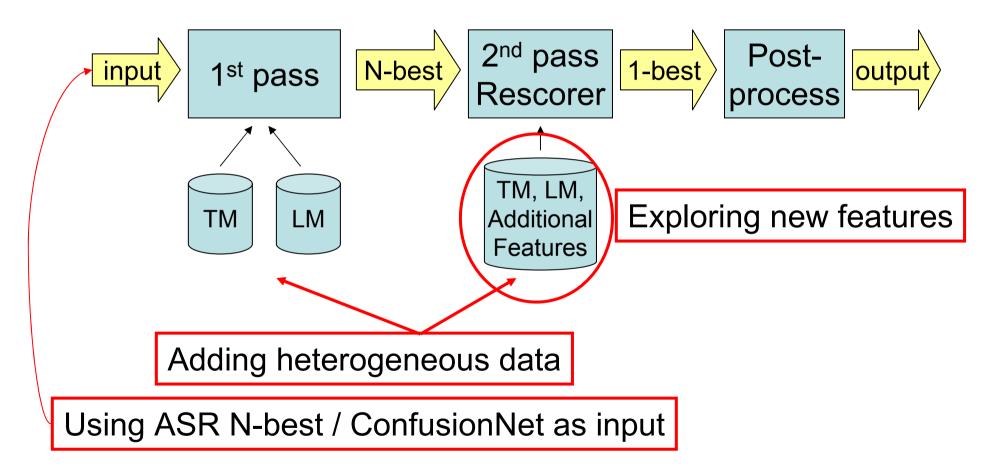
The University of Washington Machine Translation System for IWSLT 2006

Katrin Kirchhoff, <u>Kevin Duh</u>, Chris Lim {katrin,duh,chrislim}@ee.washington.edu University of Washington, Seattle

System Overview

Multi-pass phrase-based statistical MT system



- 1. Basic System & Data
 - Data
 - 1st-pass system & features
- 2. 2nd-pass Rescoring (novel features)
- 3. Adding heterogeneous data
- 4. Using ASR N-best / Confusion networks
- 5. Official results and conclusions

- Task: Italian-English open-data track
 - Input conditions: ASR-Output & Corrected transcriptions
- TRAIN SET:
 - BTEC training data + devset1,2,3 (190K words)
 - Europarl (European parliamentary proceedings)
 - (17M words) for translation model
 - Fisher (Conversational telephone speech)
 - (2.3M words) for 2nd pass language models
- DEV SET:
 - devset4 350 sentences (to optimize 2nd-pass rescorer)
- HELD-OUT SET:
 - devset4 139 sentences

Additional - heterogeneous data

First-Pass Translation System

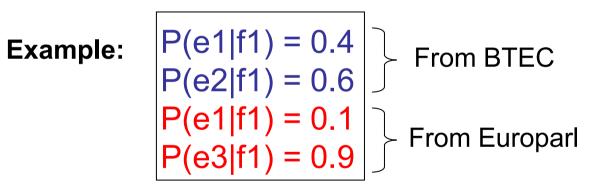
• Log-linear model:

$$e^* = \arg\max_e p(e \mid f) = \arg\max_e \{\sum_{k=1}^K \lambda_k \phi_k(e, f)\}$$

- Weights optimized on BLEU (minimum error rate training)
- Pharaoh decoder w/ monotone decoding
- 9 Features:
 - 2 phrase-based translation scores
 - 2 lexical translation scores
 - BTEC/Europarl data source indicator feature
 - word transition probability
 - phrase penalty
 - distortion penalty
 - language model score (3gram w/ KN smoothing, trained on BTEC)

Translation models

- 2 separate BTEC & Europarl phrase tables
 - Run GIZA++ and obtain heuristic alignments separately for each corpus
 - Decoder uses both phrase tables, without renormalization of probabilities



 An additional binary feature indicates the data source

- 1. Basic System & Data
 - Data
 - 1st-pass system & features
 - Postprocessing

2. 2nd-pass Rescoring (novel features)

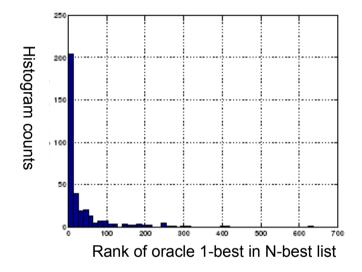
- 3. Adding heterogeneous data (Europarl, Fisher)
- 4. Using ASR N-best / Confusion networks
- 5. Official results and conclusions

2nd-pass Rescoring model

- Rescore N-best lists (N=2000max)
- Log-linear model, weights trained by downhill simplex to optimize BLEU
- 14 Features
 - 9 1st-pass model scores
 - 4-gram language model score
 - POS 5-gram score [mxpost tagger]
 - Rank in N-best list
 - Factored language model score ratio
 - Focused language model score

Rank in N-best list (2nd-pass feature)

• Idea1: Leverage 1st-pass decoder rankings in N-best

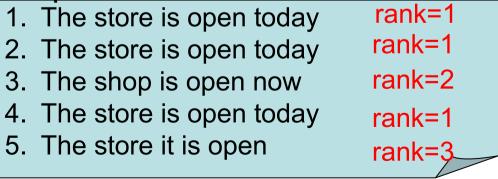


• Idea2: Hypotheses with same surface string should be tied together

Rank feature

- indicates rank of hypothesis in N-best
- ties together identical surface strings

Example N-best list



Factored Language Model Ratio (2nd-pass feature)

- Factored LM: flexible framework for incorporating diverse information (e.g. morphology, POS) [Bilmes&Kirchhoff03]
 - We model P(word_t|word_{t-1},pos_{t-1},cluster_{t-1})
 & various backoffs e.g. P(word_t|pos_{t-1},cluster_{t-1}), P(word_t|word_{t-1})
- Data-driven FLM backoff selection [Duh&Kirchhoff04]
 - Use a Genetic Algorithm search
 - FLM1: optimize on N-best oracle 1-best sentences
 - FLM2: optimize on N-best oracle worst sentences
- Feature score: $logprob{FLM_1(e)}$

 $logprob{FLM_2(e)}$

• Log-likelihood ratio: discriminate between good vs. bad sentences

Focused LM (2nd-pass feature)

- Motivation: LM trained on BTEC (BTEC+Fisher) wastes probability mass on words that never occur in the N-best list.
- Solution: train restricted-vocabulary n-grams
- During N-best optimization:
 - 1. Collect vocabulary from N-best lists (DEV set)
 - 2. Train n-gram on BTEC with restricted vocabulary
 - 3. Generate scores and optimize feature weight
- During evaluation:
 - 1. Collect vocabulary from N-best lists (EVAL set)
 - 2. Train new n-gram on BTEC with restricted vocabulary
 - 3. Generate scores for rescoring
- BIG Assumption: optimal feature weight in training is suitable in testing

LM vs. Focused LM (ASR-output) LM vs. Focused LM (co		ed LM (correct trans.)
DEV +0.7 bleu	DEV	+1.2 bleu
HELD-OUT +3.0 bleu	HELD-OUT	-1.7 bleu

Rescoring Results on DEV set

Correct transcription task	#f	BLEU	PER	Observations
Rescoring w/ 1 st -pass features	9 (44.8	30.8	Observations:
+4gram	10	44.9	31.0	-Rank is the
+FLM	10	45.0	31.4	strongest feature
+focus	10	45.1	31.6	-Combination of 14
+pos	10	45.9	30.8	features outperfor 1st-pass
+rank	10	46.8	28.5	lot page
	(\supset	-

ination of 14 es outperforms SS

ASR-output task	#f	BLEU	PER
Rescoring w/ 1 st -pass features	9	34.6	39.6
Rescoring w/ ALL FEATURES	14	37.0	37.8

- 1. Basic System & Data
 - Data
 - 1st-pass system & features
 - Postprocessing
- 2. 2nd-pass Rescoring (novel features)
- 3. Adding heterogeneous data (Europarl, Fisher)
- 4. Using ASR N-best / Confusion networks
- 5. Official results and conclusions

Adding Europarl to 1st-pass Translation Model (1/2)

- Does adding Europarl improve translation models, despite domain/style difference?
- Answer:
 - Yes, for correct transcription task
 - No, for ASR-output task

Adding Europarl to 1st-pass Translation Model (1/2)

- Does adding Europarl improve translation models, despite domain/style difference?
- Answer:
 - Yes, for correct transcription task
 - No, for ASR-output task

Phrase coverage (%) on DEV

[correct transcription task]

	BTEC	Europarl	Both
1	84.0	88.3	94.0
2	40.8	48.1	60.1
3	13.6	11.9	20.1
4	3.4	1.5	4.5
5	1.1	0.2	1.3

1st-pass translation result on DEV [correct transcription task]

	BLEU(%)	PER
BTEC	44.5	29.9
Both	46.8	28.0

Adding Europarl to 1st-pass Translation Model (2/2)

- Does adding Europarl improve translation models, despite domain/style difference?
- Answer:
 - Yes, for correct transcription task
 - No, for ASR-output task

Phrase coverage (%) on DEV

[ASR-output task]

	BTEC	Europarl	Both
1	84.0	87.7	94.6
2	38.9	43.0	54.7
3	13.6	9.9	19.1
4	4.2	1.0	4.9
5	1.4	0.2	1.6

1st-pass translation result on DEV [ASR-output task]

	BLEU(%)	PER
BTEC	36.5	38.0
Both	35.4	37.3

Adding Fisher to 2nd-pass Language Models

- Does additional conversational-style Fisher data improve (1) 4gram LM, (2) POS LM, (3) Focus LM?
- Answer:
 - No, in general
 - Yes, for Focus LM in correct transcription task (BLEU only)
 - Yes, for POS LM in ASR-output task

2nd-pass translation result on DEV

[correct transcription task]

	BLEU	PER	
4gram LM	44.9	31.0	
+ Fisher	44.8	31.0	
POS LM	45.8	30.8	
+ Fisher	45.9	30.8	
Focus LM	44.4	31.3	
+ Fisher	45.1	31.6	

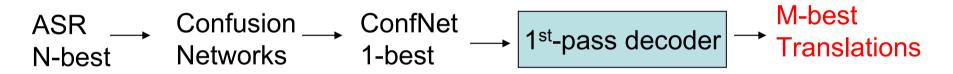
2nd-pass translation result on DEV [ASR-output task]

	BLEU	PER	
4gram LM	34.3	39.2	
+ Fisher	34.1	39.6	
POS LM	35.4	40.2	
+ Fisher	35.7	40.0	
Focus LM	35.2	39.8	
+ Fisher	34.3	40.9	

- 1. Basic System & Data
 - Data
 - 1st-pass system & features
 - Postprocessing
- 2. 2nd-pass Rescoring (novel features)
- 3. Adding heterogeneous data (Europarl, Fisher)
- 4. Using ASR N-best / Confusion networks
- 5. Official results and conclusions

ASR-outputs for machine translation

- 1. ASR 1-best \rightarrow M-best translation hypotheses Official submission
- 2. ASR N-best \rightarrow NxM-best translation hypotheses
- 3. Confusion Networks 1-best



- Idea: 1-best drawn from ConfusionNet may be more accurate than ASR 1-best
- [Post-evaluation] Significant DEV set improvement over ASR 1best (37.0 vs. 38.0 BLEU)

- 1. Basic System & Data
 - Data
 - 1st-pass system & features
 - Postprocessing
- 2. 2nd-pass Rescoring (novel features)
- 3. Adding heterogeneous data (Europarl, Fisher)
- 4. Using ASR N-best / Confusion networks
- 5. Official results and conclusions

Official Results, (Rank)

	BLEU	NIST	METEOR	WER	PER
Correct Transcription Task					
Official	35.43 (2nd)	8.19 (1st)	70.17 (1st)	48.34	38.92
No case/punc	42.06 (1st)	9.24 (1st)	70.19 (1st)	42.86	31.75
ASR-Output Task					
Official	27.87 (2nd)	6.93 (1st)	58.53 (1st)	55.87	46.76
No case/punc	31.68 (2nd)	7.69 (1st)	58.53 (1st)	53.17	42.11

Summary of submitted system:

1st pass Pharoah decoder

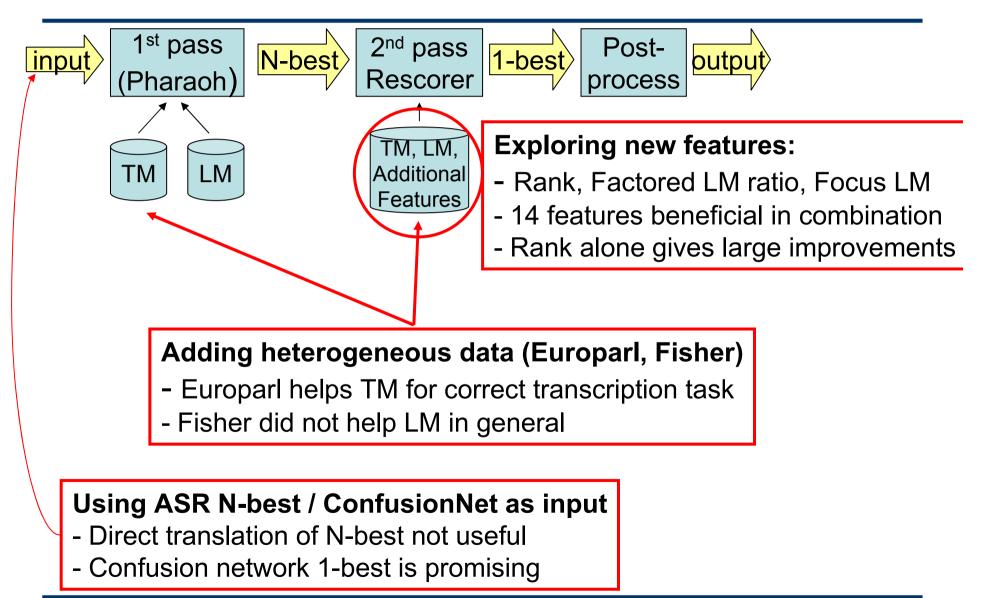
- Monotone decoding

- Translation table uses additional Europarl data

2nd pass Rescorer

- 14 features (incl. N-best rank, Factored LM, Focus LM) Input for ASR-Output Task: 1-best ASR hypothesis

Conclusions



THANKS!

Questions, suggestions, comments?

woof! ワン! bau!

UW Husky

