MaTrEx: DCU Machine Translation System for IWSLT 2006

Nicolas Stroppa and Andy Way

Dublin City University, School of Computing, NCLT

Outline

DCU@IWSLT 2006

System's description

Results

DCU@IWSLT 2006

First Participation

- Open Data Track
- Two directions:
 - $\blacktriangleright \ Italian \to English$
 - Arabic \rightarrow English
- 1-best ASR hypotheses + correct recognition results
- Use the provided training data only

Outline

DCU@IWSLT 2006

System's description

Results

MaTrEx: A Hybrid EBMT/SMT System

Overview of the system

- ► A word alignment component (GIZA++)
- A chunking component
- A chunk alignment component
- Two phrase alignment components:
 - "SMT"-style phrase aligner (standard phrase extraction from GIZA++ alignments)
 - "EBMT"-style phrase aligner (phrases are extracted from (i) the chunker and (ii) the chunk aligner)
- ► A minimum-error rate training component (PHRAMER)
- A decoder (PHARAOH)
- A case and punctuation restoration component

・ロト ・ 一 ト ・ モ ト ・ モ ト

Chunking

Two types of chunking

- Marker-based chunking
 - surface chunking based on marker words
- Treebank-based chunking
 - learner trained on annotated data extracted from treebanks

- Approach to EBMT based on the Marker Hypothesis
 - "The Marker Hypothesis states that all natural languages have a closed set of specific words or morphemes which appear in a limited set of grammatical contexts and which signal that context." (Green, 1979).
- Universal psycholinguistic constraint: languages are marked for syntactic structure at surface level by closed set of lexemes or morphemes.

In my case , it is usally on business , seldom for pleasure .

In my case , it is usally on business , seldom for pleasure .

- NPs usually start with determiners, or possessive pronouns
- PPs usually start with prepositions

In my case , it is usally on business , seldom for pleasure . Nel mio caso , solitamente per affari , raramente per piacere .

- NPs usually start with determiners, or possessive pronouns
- PPs usually start with prepositions

In my case , it is usally on business , seldom for pleasure . Nel mio caso , solitamente per affari , raramente per piacere .

- NPs usually start with determiners, or possessive pronouns
- PPs usually start with prepositions
- We can use a set of closed-class marker words to segment aligned source and target sentences (determiners, quantifiers, prepositions, conjunctions, possessive pronouns, personal pronouns, punctuation marks)

æ.,

Treebank-based Chunking

Chunking as a sequence tagging task

Example (using the Inside-Outside-Begin representation)

lt	takes	time	to	train	а	train	driver	
PRP	V	NN	ТО	V	DT	NN	NN	
B-NP	B-VP	B-NP	B-VP	I-VP	B-NP	I-NP	I-NP	0
[] _{NP}	[] _{VP}	[] _{NP}	[] _{VP}	[] _{NP}	

- Tagged data can be extracted from Treebanks (cf. CoNLL) 2000 shared task)
- Sequence tagging is performed using a classifier (sliding) window)
- Efficient classifiers such as Support Vector Machines (SVM) can be applied (implemented in e.g. YAMCHA)

Chunking

- ► The lists of English and Italian marker words were extracted from CELEX and MORPHIT respectively, and edited manually.
- ► We trained YAMCHA on the English and Arabic Penn Tree Banks.

Chunk Alignment

The chunks obtained from the chunkers have to be aligned

English: [*it* felt okay] [*after* the game] [*but* then] [*it* started turning black-and-blue] [*is* it serious ?] **Italian:** [*era* a posto] [*dopo* la partita] [*ma* poi] [*ha* cominciato] [*a* diventare livida] [*è* grave ?]

English: [*in my case*] [*it is usually*] [*on business*] [*seldom*] [*for pleasure*] **Italian:** [*nel mio caso*] [*solitamente*] [*per affari*] [*raramente*] [*per piacere*]

Chunk Alignment Strategies

We assume that for a pair of aligned chunked sentences (e_1^k, f_1^l) , we have access to $\mathbb{P}(e_i|f_j)$ and $\mathbb{P}(f_j|e_i)$.

Several alignment strategies

- Edit-distance-like alignment
- Edit-distance-(with jumps)-like alignment
- IBM model-1-like alignment

We perform the alignments in both directions and keep the intersection.

Chunk Alignment

How to compute $\mathbb{P}(e_i|f_j)$?

We can use the following information:

- Marker Tags
- Cognate Information
- Word Translation Probabilities (IBM model 1-like)

We can combine the different sources of knowledge within a log-linear model

Remark

All the parameters are computed "on the fly".

Combining the "SMT" and "EBMT" chunks

Hybridity

 EBMT and SMT aligned chunks are merged (counts are added)

Adding EBMT chunks to the SMT chunks:

- adds good alignments which are not present otherwise (less constrained strategy than the phrase extraction heuristic)
- "boosts" already present SMT chunks, i.e. contributes to the direct re-estimation of phrases (rare phrases are over-estimated)

Outline

DCU@IWSLT 2006

System's description

Results

Data and Preprocessing

- Training was performed using the provided data (no external data)
- We used the OpenNLP tokenizer (a Maximum-Entropy approach) for tokenizing the English and Italian data (a set of regular expressions was added for Italian), and ASVM for Arabic
- Chunking was done with the marker-based chunker (English, Italian), and ASVM (Arabic)
- ▶ Chunk Alignment was performed using the Edit-Distance-like aligner (Italian→English), and the Edit-Distance-with-jumps-like aligner (Arabic→English)
- 3-gram Language Model, with Kneser-Ney smoothing
- Minimum-Error Rate Training on dev4 dataset
- Punctuation and case information was restored using SRILM (hidden-ngram and disambig)
- Removed the words in the output that were directly copied from the input

Results - Arabic

ASR (1-best)

	BLEU	NIST	Meteor	WER	PER
Official	0.145	4.531	0.402	0.7027	0.5949
Additional	0.1391	4.794	0.4	0.7165	0.5870

Correct Recognition Result

	BLEU	NIST	Meteor	WER	PER
Official	0.1624	4.89	0.4336	0.686	0.5678
Additional	0.1589	5.29	0.432	0.6935	0.5537

・ロト ・回ト ・ヨト ・ヨト

ASR (1-best) - Baseline

	BLEU	NIST	Meteor	WER	PER
Official	0.2399	6.39	0.5378	0.60	0.49
Additional	0.2568	6.98	0.54	0.59	0.46

・ロト ・回ト ・ヨト ・ヨト

ASR (1-best) - Baseline (B) vs. Matrex (M)

	BLEU	NÍST	Meteor	ŴER	PER
Official-B	0.2399	6.39	0.5378	0.60	0.49
Official-M	0.2598	6.59	0.5497	0.5835	0.4869
Additional-B	0.2568	6.98	0.54	0.59	0.46
Additional-M	0.2783	7.228	0.5495	0.5662	0.4498

About 2 BLEU points improvement

Correct Recognition Result - Baseline

	BLEU	NIST	Meteor	WER	PER
Official	0.2399	6.39	0.5378	0.60	0.49
Additional	0.2568	6.98	0.54	0.59	0.46

Correct Recognition Result - Baseline (B) vs. Matrex (M)

_	BLEU	NIST	Meteor	WER	PER
Official-B	0.2882	7.223	0.6219	0.5528	0.43548
Official-M	0.3126	7.546	0.6246	0.5315	0.4286
Additional-B	0.3219	8.046	0.6220	0.5188	0.3788
Additional-M	0.3467	8.358	0.6245	0.4964	0.3744

More than 2 BLEU points improvement

Summary

- We introduced the MaTrEx Data-Driven MT system being developed at Dublin City University
- We presented a method to extract aligned phrases using chunkers and chunk akigners:
 - Marker-based chunking, SVM-based chunking
 - Edit-Distance-like chunk aligners
- We participated in the OpenData Track, for the Italian-to-English and Arabic-to-English directions

Ongoing and Future Work

- Perform a more systematic comparison of the different chunking and alignment strategies
- Insert a segmentation probability directly in the decoding process, in order to give a preference to the phrases that are chunks according to the chunker
- Insert chunk label information in a factored model

Thank you

Thank you for your attention

http://www.computing.dcu.ie/research/nclt

