

The JHU WS2006 IWSLT System

Experiments with Confusion Net Decoding

Wade Shen, Richard Zens, Nicola Bertoldi and Marcello Federico

- Spoken Language Translation
 - Motivations
 - ASR and MT
 - Statistical Approaches
- Confusion Network Decoding
 - Confusion Networks
 - Decoding of Confusion Network Input
 - Other Applications of Confusion Networks
- Factored Models for TrueCasing
- Evaluation Experiments

Motivations

Spoken Language Translation

- Translation from speech input is likely more difficult than translation from text
- Input
 - many styles and genres
 formal read speech, unplanned speeches, interviews, spontaneous conversations, ...
 - less controlled language
 relaxed syntax, spontaneous speech phenomena
 - automatic speech recognition is prone to errors possible corruption of syntax and meaning
- Need better integration for ASR and MT to improve spoken language translation

Combining ASR and MT

 Correlation between transcription word-error-rate and translation quality:

- Better transcriptions could have existed during ASR decoding: may get pruned for 1-best hypothesis
- Potential for improving translation quality by exploiting more transcription hypotheses generated during ASR.

Spoken Language Translation

Statistical Approach

- Let $_{\mathbf{O}}$ be the foreign language speech input
- Let $\mathcal{F}(o)$ be a set of possible transcriptions of o

Goal – Find the best translation e* given this approximation:

$$\mathbf{e^*} = \arg\max_{\mathbf{e}} \Pr(\mathbf{e}|\mathbf{o}) \approx \arg\max_{\mathbf{e}} \max_{f \in \mathcal{F}(\mathbf{o})} \Pr(\mathbf{e}, \mathbf{f}|\mathbf{o})$$

Pr(e, f|o) is computed with a log-linear model with:

- Acoustics features: i.e. probs that some foreign words are in the input
- Linguistic features: i.e. probs of foreign and English sentences
- Translation features: i.e. probs of foreign phrases into English
- Alignment features: i.e. probs for word re-ordering

ASR Word Graph

- A very general set of transcriptions $\mathcal{F}(o)$ can be represented by a word-graph:
 - directly computed from the ASR word lattice (e.g. HTK format, lattice-tool)
 - provides a good representations of all hypotheses analyzed by the ASR system
 - arcs are labeled with words, acoustic and language model probabilities
 - paths correspond to transcription hypotheses for which probabilities can be computed

Overview of SLT Approaches

• 1-best Translation: Translate most probable word-graph path

Pros	Most efficient
Cons	no potential to recover from recognition errors

• **N-best Translation**: *Translate N most probable paths*

	Least efficient (linearly proportional to N)		
Cons	N must be large in order to include good transcriptions		

• Finite State Transducer: Compose WG with translation FSN

Pros	Most straightforward, can examine full word graph
Cons	Prohibitive with large vocabs and long range re-ordering

• Confusion Network: translate linear approximation of WG

Pros	Can effectively explore graph w/o reordering problems
Cons	Can overgenerate the input word graph

- Spoken Language Translation
 - Motivations
 - ASR and MT
 - Statistical Approaches

- Confusion Network Decoding
 - Confusion Networks
 - Decoding of Confusion Network Input
 - Other Applications of Confusion Networks
- Factored Models for TrueCasing
- Evaluation Experiments

Confusion Networks

- A confusion network approximates a word graph with a linear network, such that:
 - arcs are labeled with words or with the empty word (-word)
 - arcs are weighted with word posterior probabilities

CNs can be conveniently represented as a sequence of columns of different depths

Confusion Network Decoding

Process

- Extension of basic phrase-based decoding process:
 - cover some not yet covered consecutive columns (span)
 - retrieve phrase-translations for all paths inside the columns
 - compute translation, distortion and target language models
- Example: Coverage Vector = 01110..., path = cancello d'

0	1	1	1	0	
era _{0.997}	$cancello_{0.995}$	€ 0.999	$di_{0.615}$	imbarco _{0.999}	
$\grave{e}_{0.002}$	$vacanza_{0.004}$	$la_{0.001}$	$d'_{0.376}$	bar _{0.001}	
$\epsilon_{0.001}$	$\epsilon_{0.002}$		$all'_{0.005}$		
			$l'_{0.002}$		
			$\epsilon_{0.001}$		

Confusion Net Decoding

Moses Implementation

- Computational issues:
 - Number of paths grows exponentially with span length
 - Implies look-up of translations for a huge number of source phrases
 - Factored models require considering joint translation over all factors (tuples):

cartesian product of all translations of each single factor

- Solutions implemented in Moses
 - Source entries of the phrase-table are stored with prefix-trees
 - Translations of all possible coverage sets are pre-fetched from disk
 - Efficiency achieved by incrementally pre-fetching over the span length
 - Phrase translations over all factors are extracted independently, then translation tuples are generated and pruned by adding a factor each time
- Once translation tuples are generated, usual decoding applies.

Other Applications of Confusion Nets

- Linguistic annotation for factored models
 - avoid hard decision by linguistic tools but rather provide alternative annotations with respective scores:
 - e.g. particularly ambiguous part of speech tags
- Translation of input similar to that produced by speech recognition
 - e.g. OCR output for optical text translation
- Insertion of punctuation marks missing in the input
 - model all possible insertions of punctuation marks in the input

• ...

- Spoken Language Translation
 - Motivations
 - ASR and MT
 - Statistical Approaches
- Confusion Network Decoding
 - Confusion Networks
 - Decoding of Confusion Network Input
 - Other Applications of Confusion Networks

- Factored Models for TrueCasing
 - Evaluation Experiments

Factored Models

Factored representation

- Combine translation/generation/LMs in log-linear way
- Benefits
 - Generalization: Gather stats over generalized classes
 - Richer models: Can make use different linguistic representations

Factored Models for TrueCasing

- Let $s_{1...i}$ be the uncased word sequence
- Let $w_{1...j}$ be the TrueCased word sequence

$$P(w_{1...j}|s_{1...j}) = \frac{P(s_{1...j}|w_{1...j}) * P(w_{1...j})}{P(s_{1...j})}$$
 arg $\max_{w_{1...j}} P(w_{1...j}|s_{1...j}) = \arg\max_{w_{1...j}} P(s_{1...j}|w_{1...j}) * P(w_{1...j})$
$$\hat{P}(w_{1...j}) \approx \prod_{k=1}^{j} P(w_{k}|w_{k-1} \dots w_{k-n+1}) \frac{\textit{Mixed-case}}{\textit{Language Model}}$$

$$\hat{P}(s_{1...j}|w_{1...j}) \approx \prod_{k=1}^{j} P(s_{k}|w_{k}) \qquad \qquad \text{Generation Model}$$

- Translate lowercased, generate TrueCase, apply LM for both
 - Integrated into decoding
- Generation and language models jointly optimized with other translation models
 - Using Powell-like MER procedure

- Spoken Language Translation
 - Motivations
 - ASR and MT
 - Statistical Approaches
- Confusion Network Decoding
 - Confusion Networks
 - Decoding of Confusion Network Input
 - Other Applications of Confusion Networks
- Factored Models for TrueCasing

Evaluation Experiments

Dev and Eval Corpus Statistics

Training Set Statistics (same models as MIT/LL)

	Chinese	English
sentences	40	K
running words	351 K	365 K
avg. sent. length	8.8	9.1
vocabulary entries	11 K	10 K

Dev4 Confusion Network Statistics

	speech type	
	read	spontaneous
avg. length	17.2	17.4
avg. / max. depth	2.2/92	2.9 / 82
avg. number of paths	10^{21}	10^{32}

Dev4 and test Word Error Rates

	speech type		
	read spontaneous		
dev4	12.8%	21.9%	
test	15.2% 20.6%		

Results

Overall Results

Courto		speech type		
test		read	spontaneous	
set	input	BLEU [%] BLEU [%]		
dev4	verbatim	21.4		
	1-best	19.0	17.2	
	full CN	19.3	17.8	
eval	verbatim	21.4		
	1-best	18.5	17.0	
	full CN	18.6	18.1	

Confusion Net Punctuation (dev4)

punctuation input type	BLEU [%]
1-best	20.8
confusion network	21.0

Factored Truecasing (dev4)

TrueCase Method	BLEU [%]
Standard Two-Pass: SMT + TrueCase	20.65
Integrated Factored Model (optimized)	21.08

Conclusions and Follow-on Work

- Confusion net decoding shows significant gains
 - Especially in spontaneous speech
 - Up to 6.4% relative improvement (higher WER?)
- Confusion nets may be helpful for coupling MT with preprocessing steps
 - **Benefits with ASR**
 - **Modest benefits with repunctuation**
- Single pass TrueCasing may be helpful
 - Joint decoding yields 2.0% relative increase
- moses available (open source) for research
 - http://www.statmt.org/moses/

