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Spoken Language Translation

* Translation from speech input is likely more difficult
than translation from text

* Input
— many styles and genres

formal read speech, unplanned speeches, interviews, spontaneous
conversations, ...

— less controlled language
relaxed syntax, spontaneous speech phenomena

— automatic speech recognition is prone to errors
possible corruption of syntax and meaning

* Need better integration for ASR and MT to improve
spoken language translation
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° Correlation between transcription word-error-rate and
translation quality:
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* Better transcriptions could have existed during ASR
decoding: may get pruned for 1-best hypothesis

* Potential for improving translation quality by exploiting more
transcription hypotheses generated during ASR.
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Spoken Language Translation B &|TC
= Statistical Approach -
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* Let o be the foreign language speech input
* LetF(0) be a set of possible transcriptions of

Goal - Find the best translation e* given this approximation:

e* = arg meaxPr(e|o)zarg max max Pr(e, f|o)

€ feF(o)

Pr(e, f|o) is computed with a log-linear model with:

* Acoustics features: i.e. probs that some foreign words are in
the input

* Linguistic features: i.e. probs of foreign and English sentences
* Translation features: i.e. probs of foreign phrases into English
* Alignment features: i.e. probs for word re-ordering
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ASR Word Graph o
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* A very general set of transcriptions 7 (0) can be
represented by a word-graph:

— directly computed from the ASR word lattice (e.g. HTK
format, l1attice-tool)

— provides a good representations of all hypotheses analyzed
by the ASR system

— arcs are labeled with words, acoustic and language model
probabilities

— paths correspond to transcription hypotheses for which
probabilities can be computed
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* 1-best Translation: Translate most probable word-graph path

Pros | Most efficient
Cons | no potential to recover from recognition errors

N-best Translation: Translate N most probable paths

Pros | Least efficient (linearly proportional to N)
Cons | N must be large in order to include good transcriptions

Finite State Transducer: Compose WG with translation FSN

Pros | Most straightforward, can examine full word graph
Cons | Prohibitive with large vocabs and long range re-ordering

* Confusion Network: translate linear approximation of WG

Pros | Can effectively explore graph w/o reordering problems
Cons | Can overgenerate the input word graph
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* A confusion network approximates a word graph with a
linear network, such that:

— arcs are labeled with words or with the empty word (-word)
— arcs are weighted with word posterior probabilities

* CNs can be conveniently represented as a sequence of
columns of different depths
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Process ..

* Extension of basic phrase-based decoding process:
— cover some not yet covered consecutive columns (span)
— retrieve phrase-translations for all paths inside the columns
— compute translation, distortion and target language models

* Example: Coverage Vector = 01110..., path = cancello d’

0) 1 1 1 0
erag.o97 | cancellog.ggs | €0.999 dig.615 imbarco g 999
€0.002 | vacanzag.pos4 | lao.0o1 | d 0.376 bar 001
€0.001 €0.002 all’ 9.005

" 0.002
€0.001
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Moses Implementation '

* Computational issues:

Number of paths grows exponentially with span length
Implies look-up of translations for a huge number of source phrases

Factored models require considering joint translation over all factors
(tuples):
cartesian product of all translations of each single factor

* Solutions implemented in Moses

Source entries of the phrase-table are stored with prefix-trees
Translations of all possible coverage sets are pre-fetched from disk

Efficiency achieved by incrementally pre-fetching over the span
length

Phrase translations over all factors are extracted independently, then
translation tuples are generated and pruned by adding a factor each
time

* Once translation tuples are generated, usual decoding applies.

8/14/2006

MIT Lincoln Lab + RWTH Aachen + ITC-irst




O . . ] % ,'7_" T
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* Linguistic annotation for factored models

— avoid hard decision by linguistic tools but rather provide
alternative annotations with respective scores:

— e.g. particularly ambiguous part of speech tags

* Translation of input similar to that produced by speech
recognition

— e.g. OCR output for optical text translation

* Insertion of punctuation marks missing in the input

— model all possible insertions of punctuation marks in the
input
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* Factored representation

Source Target

surface form ‘ Translation surface form

Models ;
lemma ‘ lernma Generation
Models
morphology ‘ morphology
Target LMs can be
applied for different
factors
* Combine translation/generation/LMs in log-linear way

* Benefits
— Generalization: Gather stats over generalized classes
— Richer models: Can make use different linguistic representations
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Factored Models for TrueCasing

* Lets; ; bethe uncased word sequence
. Letwl_“j be the TrueCased word sequence

P(s1.. jlwy.. ;) * P(wy.. ;)

P(s1..5)
argmax P(wy, jls1..;) = argmaxP(sy_jlwi. ;) *P(wi, ;)
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* Translate lowercased, generate TrueCase, apply LM for both
— Integrated into decoding

* Generation and language models jointly optimized with
other translation models

— Using Powell-like MER procedure
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& Dev and Eval Corpus Statistics

* Training Set Statistics (same models as MIT/LL)

Chinese | English
sentences 40 K
running words 351K | 365K
avg. sent. length 8.8 9.1
vocabulary entries 11 K 10 K
* Dev4 Confusion Network Statistics
speech type
read | spontaneous
avg. length 17.2 17.4
avg. / max. depth 22192 2.9/82
avg. number of paths 1 e

e Dev4 and test Word Error Rates

speech type
read | spontaneous
devd | 12.8% 21.9%
test | 15.2% 20.6%

MIT Lincoln Lab + kvv 11 Aacnen + 11 L-Irst

8/14/2006




&S Results (o
* Overall Results
speech type
test read spontaneous
set input BLEU [%] | BLEU [%]
dev4 | verbatim 214
[hest | 190
full CN 19.3 17.8
eval | verbatim 21.4
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full CN 18.6

Lhest | 183

18.1

Confusion Net Punctuation (dev4)

punctuation input type | BLEU [%]

1-best 20.8

confusion network 21.0

Factored Truecasing (dev4)

TrueCase Method BLEU [%]
Standard Two-Pass: SMT + TrueCase 20.65
Integrated Factored Model (optimized) 21.08
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* Confusion net decoding shows significant gains
— Especially in spontaneous speech
— Up to 6.4% relative improvement (higher WER?)

* Confusion nets may be helpful for coupling MT
with preprocessing steps
— Benefits with ASR
— Modest benefits with repunctuation

* Single pass TrueCasing may be helpful
— Joint decoding yields 2.0% relative increase

* moses available (open source) for research
— http:/lwww.statmt.org/moses/
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