

The MITLL/AFRL IWSLT-2006 MT System

Wade Shen, Brian Delaney, and Tim Anderson

27 November 2006

This work is sponsored by the United States Air Force Research Laboratory under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

999999-1 XYZ 11/28/2006

Statistical Translation System

Experimental Architecture

- Standard Statistical Architecture
- New this year
 - Improved Training
 - Better Decoders internal decoder moses
 - Rescoring Features
- Participated in
 - Chinese ⇒ English
 - Japanese ⇒ English
 - Italian ⇒ English
- Focus on Chinese ⇒ English

The MITLL/AFRL MT System

Overview

- CLA and GIZA++ alignments
- Factored Models: Hybrid Alignment templates
- Better Decoding
 - Reordering Constraints
 - Higher-order LMs
- Development Experiments
 - Segmentation and Alignment
 - Rescoring
 - Pre/Post-processing
- Evaluation Results
 - Manual Transcription
 - ASR Transcription
- Next Steps

Improved Training

Segmentation and Alignment

- Added CLA Alignments
 - Assumes 1-1 alignment
 - Poor quality phrases without IBM models
 - Simple Greedy Algorithm [Melamed 2000]
 - Simple symmetric Likelihood function

$$L(e, f) = X_{ef}^2 = \sum_{s=i}^{N} \frac{(x_s - E_{ef})^2}{E_{ef}}$$

	Open	up	-
打	0.2	0.8	0.0
开	0.7	0.1	0.2
o	0.1	0.1	0.8
			MIT Lincoln La

Improved Training

Alignment and Segmentation

- Segmentation Phrase extraction
 - Word and Character Segmentation
 - CLA and IBM Model 5 alignments
 - **Resegment Words** (Chinese)
 - All decoding done with char-seg (Chinese)

Seg/Align	Word	Char
Model 5	ALL	Chinese
CLA	ALL	Chinese

Improved Training

Hybrid Alignment Template Models

- Apply Factored Models using Unsupervised Word Classes
 - Words represented by different linguistic factors
 - Factors can be translated separately
 - LMs can be applied to factors independently
- Can we use automatic word classes to learn general sequence constraints?
- First Experiment: Word Class LMs of varying orders Target Phrase

IWSLT Chinese Alignment Templates for Translation

- Second Experiment: Extend Class-based LM to the translation Model
- Bigram word classes for source and target
- Translate alignment templates similar to [Och 98] + surface
- Apply LM to surface and Class

- Improved Training
 - CLA and GIZA++ alignments
 - Factored Models: Hybrid Alignment templates

- Better Decoding
 - Reordering Constraints
 - Higher-order LMs
- Development Experiments
 - Segmentation and Alignment
 - Rescoring
 - Pre/Post-processing
- Evaluation Results
 - Manual Transcription
 - ASR Transcription
- Next Steps

Better Decoding Reordering Constraints

- Revisit Reordering Constraints [Zens 03]
 - IBM Constraints: *Must cover first K uncovered positions*

- Used both moses and internal decoder for IWSLT-2006
- Both modified to support n-gram LMs > order 3
- Consistent and Significant Gain with 4-gram LM
- Allowed
 - high-order Class LM (with moses)
 - integrated TrueCasing with 4-gram LM

- Improved Training
 - CLA and GIZA++ alignments
 - Factored Models: Hybrid Alignment templates
- Better Decoding
 - Reordering Constraints
 - Higher-order LMs

Development Experiments

- Segmentation and Alignment
- Rescoring
- Pre/Post-processing
- Evaluation Results
 - Manual Transcription
 - ASR Transcription
- Next Steps

Development Experiments

Segmentation and Alignment

- All Results reported on Dev-4
- Official Eval Condition
 - Mixed-case + Punctuation
- Optimized using Dev-1
 - With Rescoring Features
 - Development done w/Chinese

Chinese

Configuration	BLEU
Character Segmented	21.24
Word + Char Seg	21.21
Word Segmented	21.01
Word + Char Seg + CLA	22.18

Japanese

Configuration	BLEU
Word Segmented	23.63
Word Seg + Char Backoff	23.82
Word Segmented + CLA	23.34
Word + Char Backoff + CLA	24.28

Configuration	BLEU
Word Segmented	35.13
Word Segmented + CLA	37.40

Development Experiments Rescoring

Chinese

Configuration	BLEU
Baseline 4-gram Decode	21.39
+ 5-gram rescore LM	21.55
+ 6-gram class-based LM	21.52
+ Model 1	21.86
+ Sentence Length Posterior*	22.10

Japanese

Configuration	BLEU
Baseline 4-gram Decode	21.92
All Rescoring Features	24.28

- Eval Configuration
 - 5-gram rescore
 - 6-gram class-based LM
 - Model 1
- * Length posterior added posteval

Configuration	BLEU
Baseline 4-gram Decode	36.92
All Rescoring Features	37.40

Development Experiments Pre/Post-Processing

Chinese

Configuration	BLEU
Remove Source Punctuation	21.86
Re-punctuated Source	
TrueCase with 3gram	21.93
TrueCase with 4gram	22.10
TrueCase with 5gram	22.10

Japanese

Configuration	BLEU
Remove Source Punctuation	23.14
Re-punctuated Source	24.28

- Remove Source Punctuation
 - Truecased with 4gram LM
- Final Configuration
 - Repunctuate source
 - Truecase with 4gram

Configuration	BLEU
Remove Source Punctuation	36.64
Re-punctuated Source	37.40

Development Experiments

Hybrid Alignment Template

- Baseline: word segmented, 3-gram no rescore
- Class-LM significantly better (p=0.05, ~1.0 BLEU)
- Class-Trans may be limited by synchronous PT constraint

MIT Lincoln Laboratory

- Improved Training
 - CLA and GIZA++ alignments
 - Factored Models: Hybrid Alignment templates
- Better Decoding
 - Reordering Constraints
 - Higher-order LMs
- Development Experiments
 - Segmentation and Alignment
 - Rescoring
 - Pre/Post-processing
- Evaluation Results
 - Manual Transcription
 - ASR Transcription
- Next Steps

Evaluation Results *Manual Transcription*

Chinese

Configuration	BLEU
Optimized (Dev Set 4)	21.57
Optimized (Dev Set 1)	20.66
No Rescore (Opt Dev4)	21.27

Japanese

Configuration	BLEU
Optimized (Dev Set 4)	20.99
Optimized (Dev Set 1)	20.24

- Rank
 - Chinese: 2nd of 13
 - Italian: 2nd
 - Japanese: 4th

Configuration	BLEU
Optimized (Dev Set 4)	35.74
Optimized (Dev Set 1)	34.40

Evaluation Results ASR Transcription

Chinese (Read)

Configuration	BLEU
1-best ASR (Opt Dev4)	18.61
10-best ASR (Opt Dev4)	17.42
1-best ASR (Opt Dev1)	18.46

Chinese (Spontaneous)

Configuration	BLEU
1-best ASR (Opt Dev4)	16.57
10-best ASR (Opt Dev4)	16.57*

- Rank
 - Chinese: 3rd of 13
 - Italian: 4th
 - (secondary system: 2nd)
 - Japanese: 4th

Japanese

Configuration	BLEU
1-best ASR (Opt Dev4)	18.91
1-best ASR (Opt Dev1)	18.43

Configuration	BLEU
1-best ASR (Opt Dev4)	27.98
10-best ASR (Opt Dev4)	28.81
1-best ASR (Opt Dev1)	27.64
10-best ASR (Opt Dev1)	27.81

- Improved Training
 - CLA and GIZA++ alignments
 - Factored Models: Hybrid Alignment templates
- Better Decoding
 - Reordering Constraints
 - Higher-order LMs
- Development Experiments
 - Segmentation and Alignment
 - Rescoring
 - Pre/Post-processing
- Evaluation Results
 - Manual Transcription
 - ASR Transcription
- Next Steps

- Work with MIT/SLS on
 - Hybrid hierarchical translation for Chinese

