CSLM for IWSLT 2006

LIMSI-UPO

Introduction

Architecture of the CSLM

Baseline SM systems

Evaluation

Dev data Eval data

Conclusion

Continuous Space Language Models for the IWSLT 2006 Task

Holger Schwenk Marta R. Costa-jussà and José A. R. Fonollosa

LIMSI-CNRS, France schwenk@limsi.fr

UPC, Spain
mruiz, adrian@gps.tsc.upc.edu

November, 27 2006

Plan

CSLM for IWSLT 2006

LIMSI-UPO

Introduction

Architecture of the CSLM

Baseline SMT systems

systems Evaluation

Dev data Eval data

- Context and motivation
- Continuous space language model
- Baseline SMT systems
- Experimental evaluation on the IWSLT'06 tasks
- Conclusion and perspectives

Introduction

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

Architecture o the CSLM

Baseline SMT

Evaluation

Dev data

Conclusion

Context of this work

- BTEC task of IWSLT 2006
- Statistical MT systems rely on representative resources
- Resources to train SMT systems are very limited (40k sentences bitexts, 320k words for LM)
- ⇒ Need for techniques to take better advantage of the available resources

Language modeling for SMT

- Most systems use n-gram word or class back-off LMs
- Language model adaptation [CMU, IWSLT'05]
- Factored LMs [Kirchoff, ACL wshop'05], syntax-based LMs [Charniak, MT Summit'03

Introduction

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

Architecture of the CSLM

Baseline SMT

Evaluation

Dev data

Eval data

Conclusior

Context of this work

- BTEC task of IWSLT 2006
- Statistical MT systems rely on representative resources
- Resources to train SMT systems are very limited (40k sentences bitexts, 320k words for LM)
- ⇒ Need for techniques to take better advantage of the available resources

Language modeling for SMT

- Most systems use n-gram word or class back-off LMs
- Language model adaptation [CMU, IWSLT'05]
- Factored LMs [Kirchoff, ACL wshop'05], syntax-based LMs [Charniak, MT Summit'03]

Continuous Space Language Models Introduction

CSLM for IWSLT 2006

Introduction

Architecture of the CSLM

Baseline SMT systems

Evaluation

Dev data Eval data

Conclusion

Theoretical Drawbacks of Back-off LM

- Words are represented in a high-dimensional discrete space
- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability
- ⇒ True generalization is difficult to obtain

New Approach [Bengio, NIPS'01]:

- Project word indices onto a continuous space and use a probability estimator operating on this space
- Probability functions are smooth functions and better generalization can be expected

Continuous Space Language Models Introduction

CSLM for IWSLT 2006

Introduction

Architecture of the CSLM

Baseline SM⁻ systems

Evaluation Dev data

Conclusio

Theoretical Drawbacks of Back-off LM

- Words are represented in a high-dimensional discrete space
- Probability distributions are not smooth functions
- Any change of the word indices can result in an arbitrary change of LM probability
- ⇒ True generalization is difficult to obtain

New Approach [Bengio, NIPS'01]:

- Project word indices onto a continuous space and use a probability estimator operating on this space
- Probability functions are smooth functions and better generalization can be expected

Continuous Space Language Models Introduction

CSLM for IWSLT 2006

LIMSI-UP

Introduction

Architecture of the CSLM

Baseline SMT svstems

Evaluation

Dev data

Conclusion

Application of Continuous Space Language Model

- Very successful in LVCSR
- Initial experiments with a word-based SMT system [Schwenk, ACL'06]

Cooperation with UPC

- First application of the CSLM to a state-of-the-art SMT system
- n-best list rescoring of UPC's phrase and Ngram-based system
- All four languages are considered (translation of Mandarin, Japanese, Arabic and Italian to English)

Continuous Space Language Models Introduction

CSLM for IWSLT 2006

Introduction

Architecture of the CSLM

Baseline SMT systems

Evaluation

Dev data

Lvaruata

Application of Continuous Space Language Model

- Very successful in LVCSR
- Initial experiments with a word-based SMT system [Schwenk, ACL'06]

Cooperation with UPC

- First application of the CSLM to a state-of-the-art SMT system
- n-best list rescoring of UPC's phrase and Ngram-based system
- All four languages are considered (translation of Mandarin, Japanese, Arabic and Italian to English)

Architecture - Probability Calculation

CSLM for IWSLT 2006

LIMSI-UPC

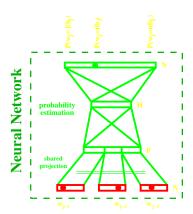
Introduction

Architecture of the CSLM

Baseline SMT systems

Evaluation Dev data

Conclusion



$$\textit{h}_{j} = \textit{w}_{j-n+1},...,\textit{w}_{j-2},\textit{w}_{j-1}$$

- Outputs = LM posterior probabilities of all words: $P(w_j = i | h_j) \quad \forall i \in [1, N]$
- Context h_j = sequence of n−1 points in this space
- Word = point in the P dimensional space
- Projection onto a continuous space
- Inputs = indices of the n-1 previous words

Architecture - Probability Calculation

CSLM for IWSLT 2006

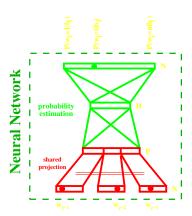
A mala than a transaction

Architecture of the CSLM

Baseline SMT systems

Evaluation Dev data

Conclusion



$$\textit{h}_{j} = \textit{w}_{j-n+1},...,\textit{w}_{j-2},\textit{w}_{j-1}$$

- Outputs = LM posterior probabilities of all words: $P(w_j = i|h_j) \ \forall i \in [1, N]$
- Context h_j = sequence of n−1 points in this space
- Word = point in the P dimensional space
- Projection onto a continuous space
- Inputs = indices of the
 n-1 previous words

Architecture - Probability Calculation

CSLM for IWSLT 2006

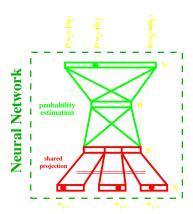
Architecture of the CSLM

Baseline SMT systems

Evaluation

Dev data Eval data

Conclusion



$$h_j = w_{j-n+1},...,w_{j-2},w_{j-1}$$

- Outputs = LM posterior probabilities of all words: $P(w_j = i|h_j) \ \forall i \in [1, N]$
- Context h_j = sequence of n−1 points in this space
- Word = point in the P dimensional space
- Projection onto a continuous space
- Inputs = indices of the n-1 previous words

Architecture - Probability Calculation

CSLM for IWSLT 2006

LIIVIOI OI

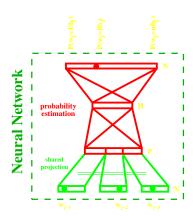
Introduction

Architecture of the CSLM

systems

Dev data

Conclusion



$$h_j = w_{j-n+1},...,w_{j-2},w_{j-1}$$

- Outputs = LM posterior probabilities of all words: $P(w_j = i | h_j) \ \forall i \in [1, N]$
- Context h_j = sequence of n−1 points in this space
- Word = point in the P dimensional space
- Projection onto a continuous space
- Inputs = indices of the
 n-1 previous words

Architecture - Training

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

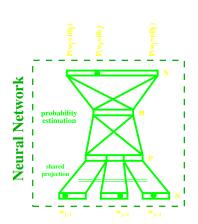
Architecture of the CSLM

systems

Evaluation

Dev data Eval data

Conclusion



Training

 Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

- + weight decay
- ⇒ NN minimizes perplexity on training data
- Continuous word codes are also learned (random initialization)

Continuous Space Language Models Architecture - Training

CSLM for IWSLT 2006

LIMSI-UPC

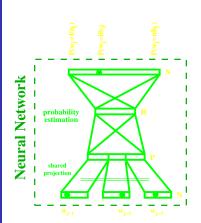
Introduction

Architecture of the CSLM

Baseline SM systems

Dev data

Conclusion



Training

 Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

- + weight decay
- ⇒ NN minimizes perplexity on training data
- Continuous word codes are also learned (random initialization)

Continuous Space Language Models Architecture - Training

CSLM for IWSLT 2006

LIMSI-UPC

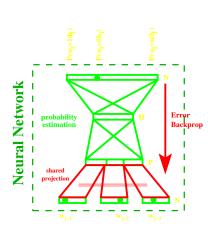
Introduction

Architecture of the CSLM

Baseline SMT

Evaluation Dev data

Conclusion



Training

 Backprop training, cross-entropy error

$$E = \sum_{i=1}^{N} d_i \log p_i$$

- + weight decay
- ⇒ NN minimizes perplexity on training data
- Continuous word codes are also learned (random initialization)

Architecture - Practical Issues

CSLM for IWSLT 2006 LIMSI-UPC

Introduction

Architecture of the CSLM

Baseline SMT systems

Evaluation

Dev data

Conclusion

Interpolation

- Back-off LM (modified Kneser-Ney smoothing, SRILM) and CSLM trained on 326k words,
- Both LM seem to be complementary
 - → interpolated together
- Several neural networks are trained independently using different sizes of the continuous representation
- EM optimization of the interpolation coefficients: minimize perplexity on the Dev data (0.33 for LM)
- Replace the original LM scores with those of this interpolated LM
- Alternatively we could use several feature functions and tune the coefficients on the BLEU score

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

Architecture of the CSLM

Baseline SMT systems

Evaluatior Dev data

Conclusio

Incorporation into UPC's SMT systems

- Use of UPC's phrase-based and Ngram-based system
- Both systems were described in detail just before the break
- Slight difference with respect to official evaluation systems (most of them achieve better results)
- 1000-best list rescoring
 - + re-optimization of feature function weights

Phrase-based system

- Standard phrase extraction algorithm
- Translation model probabilities in both directions are estimated using relative frequencies

CSLM for IWSLT 2006 LIMSI-UPC

Introduction

Architecture of the CSLM

Baseline SMT systems

Evaluation

Dev data

Eval data

Conclusio

Incorporation into UPC's SMT systems

- Use of UPC's phrase-based and Ngram-based system
- Both systems were described in detail just before the break
- Slight difference with respect to official evaluation systems (most of them achieve better results)
- 1000-best list rescoring
 - + re-optimization of feature function weights

Phrase-based system

- Standard phrase extraction algorithm
- Translation model probabilities in both directions are estimated using relative frequencies

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

the CSLM

Baseline SMT systems

Evaluatio

Conclusion

N-gram-based system

- Monotonic segmentation of each sentence pair
- Translation model probabilities are estimated as a bilingual LM

$$p(e,f) = Pr(t_1^K) = \prod_{k=1}^K p(t_k \mid t_{k-2}, t_{k-1})$$

- This translation model includes an implicit target language model
- → Is an improved target LM still helpful ?

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

the CSLM

Baseline SMT systems

Evaluation

Dev data

Canalusia

N-gram-based system

- Monotonic segmentation of each sentence pair
- Translation model probabilities are estimated as a bilingual LM

$$p(e,f) = Pr(t_1^K) = \prod_{k=1}^K p(t_k \mid t_{k-2}, t_{k-1})$$

- This translation model includes an implicit target language model
- → Is an improved target LM still helpful?

Additional Features

CSLM for IWSLT 2006

Introduction

Architecture of

Baseline SMT

Baseline SN systems

Evaluation

Dev data

Eval data

Conclusion

Log-linear combination of feature functions

$$\tilde{e_1^I} = \underset{e_1^I}{\operatorname{argmax}} \left\{ \sum_{m=1}^M \lambda_m h_m(f_1^J, e_1^I) \right\}$$
 (1)

- Phrase translation probabilities or Ngram translation language model
- Word bonus model (and phrase bonus model)
- Source → target lexicon model (IBM1 probabilities)
- Target → source lexicon model (IBM1 probabilities)
- Target language model (4-gram back-off or continuous space LM)

Experimental Evaluation Data sets

CSLM for IWSLT 2006

Introduction

the CSLM

systems

Evaluation

Dev data Eval data

Conclusion

BTEC Open data track

- Open data track of the 2006 IWSLT evaluation
- ightarrow Only the supplied subset of the full BTEC corpus was used
 - Results on the supplied Dev corpus of 489 sentences (<6k words) and the official test set (evaluation server)
 - Scoring is case insensitive and punctuations are ignored

Results on Development Data (1)

CSLM for IWSLT 2006

Introduction

Architecture of the CSLM

systems

Evaluation Dev data

Conclusion

	Phrase-based system			N-gram-based system		
	Oracle	Ref.	CSLM	Oracle	Ref.	CSLM
Mand.	33.1	20.68	21.97	32.0	20.84	21.83
Japan.	26.9	17.29	18.27	28.6	18.34	19.77
Arabic	40.1	27.92	30.28	41.6	29.09	30.89
Italian	56.2	41.66	44.03	58.1	41.65	44.67

- Oracle scores calculated using cheating Dev-LM
- Improvements between 1 and 3 points BLEU
- Slightly better gains for Ngram-based systems
- Notable differences between the languages (also lower oracle BLEU scores)

Results on Development Data (1)

CSLM for IWSLT 2006

Introduction

Architecture of the CSLM

systems

Dev data

Canaluaia

	Phrase-based system			N-gram-based system		
	Oracle	Ref.	CSLM	Oracle	Ref.	CSLM
Mand.	33.1	20.68	21.97	32.0	20.84	21.83
Japan.	26.9	17.29	18.27	28.6	18.34	19.77
Arabic	40.1	27.92	30.28	41.6	29.09	30.89
Italian	56.2	41.66	44.03	58.1	41.65	44.67

- Oracle scores calculated using cheating Dev-LM
- Improvements between 1 and 3 points BLEU
- Slightly better gains for Ngram-based systems
- Notable differences between the languages (also lower oracle BLEU scores)

Results on Development Data (1)

CSLM for IWSLI 2006

Introduction

Architecture of the CSLM

systems

Evaluation Dev data

Canaluaia

	Phrase-based system			N-gram-based system		
	Oracle	Ref.	CSLM	Oracle	Ref.	CSLM
Mand.	33.1	20.68	21.97	32.0	20.84	21.83
Japan.	26.9	17.29	18.27	28.6	18.34	19.77
Arabic	40.1	27.92	30.28	41.6	29.09	30.89
Italian	56.2	41.66	44.03	58.1	41.65	44.67

- Oracle scores calculated using cheating Dev-LM
- Improvements between 1 and 3 points BLEU
- Slightly better gains for Ngram-based systems
- Notable differences between the languages (also lower oracle BLEU scores)

Results on Development Data (1)

CSLM for IWSLT 2006 LIMSI-UPC

Introduction

Architecture of the CSLM

systems

Evaluation Dev data

Conclusion

	Phrase-based system			N-gram-based system		
	Oracle	Ref.	CSLM	Oracle	Ref.	CSLM
Mand.	33.1	20.68	21.97	32.0	20.84	21.83
Japan.	26.9	17.29	18.27	28.6	18.34	19.77
Arabic	40.1	27.92	30.28	41.6	29.09	30.89
Italian	56.2	41.66	44.03	58.1	41.65	44.67

- Oracle scores calculated using cheating Dev-LM
- Improvements between 1 and 3 points BLEU
- Slightly better gains for Ngram-based systems
- Notable differences between the languages (also lower oracle BLEU scores)

Results on Development Data (2)

CSLM for IWSLT 2006 LIMSI-UPC

Introduction

Architecture o

Baseline SMT systems

Dev data

Conclusion

Word Error rates

	Dhr	ooo b	aaad	N/ a	M gram based		
	Pili	ase-b			N-gram-based		
	Oracle	Ref.	CSLM	Oracle	Ref.	CSLM	
Ma/En mWER	59.1	67.4	66.5	58.1	67.8	66.6	
mPER	44.5	50.8	50.1	45.3	51.5	50.6	
Ja/En mWER	70.8	74.6	77.0	63.5	73.0	71.3	
mPER	48.5	52.2	54.6	46.1	53.4	51.8	
Ar/En mWER	49.1	56.0	52.7	48.1	55.7	52.8	
mPER	40.3	45.7	43.3	39.6	44.0	42.5	
It/En mWER	34.1	42.3	40.7	33.1	42.8	40.8	
mPER	26.6	31.6	30.5	26.0	31.9	30.7	

- Nice gains for the Arabic/English system
- Problem with the phrase-based system for Japanese

Results on Development Data (2)

CSLM for IWSLT 2006 LIMSI-UPC

Introduction

Architecture o

Baseline SMT systems

Dev data

Conclusion

Word Error rates

	Phrase-based			N-gram-based		
	Oracle	Ref.	CSLM	Oracle	Ref.	CSLM
Ma/En mWER	59.1	67.4	66.5	58.1	67.8	66.6
mPER	44.5	50.8	50.1	45.3	51.5	50.6
Ja/En mWER	70.8	74.6	77.0	63.5	73.0	71.3
mPER	48.5	52.2	54.6	46.1	53.4	51.8
Ar/En mWER	49.1	56.0	52.7	48.1	55.7	52.8
mPER	40.3	45.7	43.3	39.6	44.0	42.5
It/En mWER	34.1	42.3	40.7	33.1	42.8	40.8
mPER	26.6	31.6	30.5	26.0	31.9	30.7

- Nice gains for the Arabic/English system
- Problem with the phrase-based system for Japanese

Example Translations

CSLM for IWSLT 2006 LIMSI-UPC

Introductio

Architecture of the CSLM

Baseline SMT systems

Dev data

Conclusion

Phrase-based system

Zh: could you we arrive time is two thirty departure time is two five ten

→ you can the time we arrive at two thirty departure time is two fifty

Ar: information your will we arrive at two thirty and an appointment is two and the fifty minutes

→ information i'll arrive at two thirty and time is two and fifty minutes

It: for your information we'll be arriving at two o'clock and thirty and your departure time is at two o'clock and fifty

ightarrow for your information we'll arrive at two thirty and your departure time is at two fifty

Ngram-based system

Ja: we arrive at two thirty takeoff time is fifty two o'clock so you reference you please

→ we arrive at two thirty take off time is two o'clock in fifty so you your reference please

Ar: i'll information you arrive at two thirty time and is two and fifty minutes

 \rightarrow i'll information you arrive at two thirty and time is two and fifty minutes

Results on Evaluation Data (1)

CSLM for IWSLT 2006

LIMSI-UPC

Introductio

Architecture of the CSLM

Baseline SM

Evaluation

Dev data Eval data

	Phrase	e-based	N-gran	n-based				
	Ref.	CSLM	Ref.	CSLM				
Mandarin/English:								
BLEU	19.74	21.01	20.34	21.16				
mWER	67.95	68.16	68.30	67.63				
mPER	52.46	51.87	52.81	52.31				
Japanes	Japanese/English:							
BLEU	15.11	15.73	16.14	16.35				
mWER	77.51	78.15	75.45	75.59				
mPER	55.14	54.96	55.52	55.29				

- Good generalization behavior for Mandarin (Dev +1.3/1.0)
- Small gain for Japanese
- mWER increases in mots cases (but not mPER)

Results on Evaluation Data (1)

CSLM for IWSLT 2006

LIMSI-UPC

Introductio

Architecture of the CSLM

Baseline SM

Evaluation

Dev data Eval data

	Phrase	e-based	N-gram-based					
	Ref.	CSLM	Ref.	CSLM				
Mandarin/English:								
BLEU	19.74	21.01	20.34	21.16				
mWER	67.95	68.16	68.30	67.63				
mPER	52.46	51.87	52.81	52.31				
Japanes	Japanese/English:							
BLEU	15.11	15.73	16.14	16.35				
mWER	77.51	78.15	75.45	75.59				
mPER	55.14	54.96	55.52	55.29				

- Good generalization behavior for Mandarin (Dev +1.3/1.0)
- Small gain for Japanese
- mWER increases in mots cases (but not mPER)

Results on Evaluation Data (1)

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

Architecture of the CSLM

Baseline SM

Evaluation

Dev data Eval data

	Phrase	e-based	N-gram-based				
	Ref.	CSLM	Ref.	CSLM			
Mandarin/English:							
BLEU	19.74	21.01	20.34	21.16			
mWER	67.95	68.16	68.30	67.63			
mPER	52.46	51.87	52.81	52.31			
Japanese/English:							
BLEU	15.11	15.73	16.14	16.35			
mWER	77.51	78.15	75.45	75.59			
mPER	55.14	54.96	55.52	55.29			

- Good generalization behavior for Mandarin (Dev +1.3/1.0)
- Small gain for Japanese
- mWER increases in mots cases (but not mPER)

Results on Evaluation Data (2)

CSLM for IWSLT 2006

Introductio

Architecture of the CSLM

Baseline SN

Evaluatio

Dev data Eval data

Conclusior

	Phrase	e-based	N-gram-based				
	Ref.	CSLM	Ref.	CSLM			
Arabic/English:							
BLEU	23.72	24.86	23.83	23.70			
mWER	63.04	60.89	62.81	61.97			
mPER	49.43	48.61	49.41	48.85			
Italian/English:							
BLEU	35.55	37.41	35.95	37.65			
mWER	49.12	47.22	48.78	47.59			
mPER	38.17	36.62	38.12	37.26			

- No improvement in BLEU score with Ngram-system for Arabic (BLEU decreases despite gain in mWER and mPER)
 - Improvements of 1.8 point BLEU for Italian

Results on Evaluation Data (2)

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

Architecture of the CSLM

Baseline SI systems

Evaluatio

Dev data Eval data

	Phrase	e-based	N-gram-based				
	Ref.	CSLM	Ref.	CSLM			
Arabic/English:							
BLEU	23.72	24.86	23.83	23.70			
mWER	63.04	60.89	62.81	61.97			
mPER	49.43	48.61	49.41	48.85			
Italian/English:							
BLEU	35.55	37.41	35.95	37.65			
mWER	49.12	47.22	48.78	47.59			
mPER	38.17	36.62	38.12	37.26			

- No improvement in BLEU score with Ngram-system for Arabic (BLEU decreases despite gain in mWER and mPER)
- Improvements of 1.8 point BLEU for Italian

Discussion and Perspectives

CSLM for IWSLT 2006

LIMSI-UPC

Introduction

Architecture of the CSLM

Baseline SMT

Evaluation

Dev data

Conclusion

Summary

- Continuous space LM on top of UPC's evaluation systems
- Dev-data: gain between 1 and 3 points BLEU
- Eval data: up to 1.9 points BLEU
- ⇒ Promising approach for tasks with limited resources

Ongoing Work

- Further analysis of the improvements
- Interaction with word reordering?
- Usefulness of long span LMs
- Continuous space translation model (Ngram system)

Discussion and Perspectives

CSLM for IWSLT 2006

LIMSI-UP

Introduction

Architecture of the CSLM

systems

Evaluation

Dev data

Eval data

Conclusion

Summary

- Continuous space LM on top of UPC's evaluation systems
- Dev-data: gain between 1 and 3 points BLEU
- Eval data: up to 1.9 points BLEU
- ⇒ Promising approach for tasks with limited resources

Ongoing Work

- Further analysis of the improvements
- Interaction with word reordering?
- Usefulness of long span LMs
- Continuous space translation model (Ngram system)