An Efficient Graph Search Decoder for Phrase-Based Statistical Machine Translation

Brian Delaney, Wade Shen, and Timothy Anderson

28 November 2006
Introduction

• Efficient search remains an important goal for practical implementations of statistical machine translation

• Our goals were to create a decoder that:
 – Can be used in “real-time” speech translation
 – Can handle large vocabulary tasks at or near real-time
 – Enables easy integration with other speech components (ASR, TTS, etc.)

• Overview
 – Our implementation of a graph search decoder
 – Analysis of performance on the IWSLT-06 task
Decoder Highlights

• The basics
 – Uses phrase-based models with log-linear parameter combination
 – A-star graph search with beam and histogram pruning

• New features
 – Decoding with up to 5-gram language model
 – Output phrase lattice for optimization and rescoring
 – On-demand disk-based models for decoding of large vocabulary speech input in real-time
 – Reordering constraints for improved speed
 – Galaxy Communicator API to interface with other speech components (i.e. ASR, TTS, Language ID, etc.)
Ci sono messaggi per me ? → Are there any messages for me ?

- Start state: No source words covered
- Select source/target phrase pairs from phrase table
- Expand nodes according to source coverage and LM context, using LM back-off structure
- Keep best path back pointer
- Back-trace along best path for 1-best result
Pruning and A-star Heuristic

• Standard beam and histogram pruning using best path score into each node

• All nodes that cover the same number of words are pruned together

• Because of distortion, “easy” words tend to get translated first
 – Need an estimate of future cost (A-star heuristic)

• Heuristic is based on words not yet translated
 – Same as with Pharaoh
 – Tried several enhancements to the Pharaoh:
 * Best case distortion for next phrase
 * Best/average language model expansion using current node context
 – Neither gave consistent improvement in accuracy or speed
On-The-Fly Beam Pruning

• Profiling revealed that computing language model scores at phrase boundaries is costly
 – This is done when considering a new hypothesis
 – Most of these hypotheses get pruned out immediately

• Solution
 – Keep track of best path cost during search loop
 – Skip translations whose partial scores (i.e. without language model) fall outside the beam

• Results in almost 2x speedup with a very little change in BLEU

• Sorting list of translations options upfront by the best future cost helps to find best translation faster
 – results in faster search
Phrase Reordering (1)

- To allow word movement, source words may be translated in any order.
- Without any constraints, the search grows exponentially with sentence length.
- Limiting word movement by some maximum helps reduce complexity.
- Incomplete paths can occur, resulting in wasted search effort.

Reordering graph for 4 input words with dlimit=2
Phrase Reordering (2)

- Additional reordering constraints (Zens 03)
 - IBM: *only choose words or phrases that fill the first k unfilled words*
 - ITG: *do not allow “inside out” reordering patterns*

- ITG + distortion limit can produce graph with incomplete paths

- IBM constraints do not have this problem

Reordering graph for 4 input words with IBM constraints (k=2)
Phrase Reordering (3)

• We implemented an additional reordering constraint that allows for fast decoding with reasonable accuracy
 – Choose a new phrase that covers some portion of the first available gap
 – any new gaps must be less than the allowed distortion limit

• Not strictly a phrase swap and more constrained than IBM

• Results in fast decoding with good accuracy
 – Ideal for real-time speech translation
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Language Pair</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE</td>
<td>BLEU</td>
<td>Chars/sec</td>
<td>JE</td>
</tr>
<tr>
<td>Pharaoh</td>
<td>20.41</td>
<td>0.85</td>
<td>23.07</td>
<td>1.39</td>
</tr>
<tr>
<td>free-3g</td>
<td>20.19</td>
<td>2.99</td>
<td>22.79</td>
<td>5.39</td>
</tr>
<tr>
<td>free-4g</td>
<td>20.73</td>
<td>1.45</td>
<td>21.76</td>
<td>2.26</td>
</tr>
<tr>
<td>free-5g</td>
<td>20.39</td>
<td>1.23</td>
<td>21.99</td>
<td>1.65</td>
</tr>
<tr>
<td>IBM-3g</td>
<td>20.31</td>
<td>3.70</td>
<td>22.55</td>
<td>6.14</td>
</tr>
<tr>
<td>IBM-4g</td>
<td>20.15</td>
<td>0.92</td>
<td>21.64</td>
<td>2.04</td>
</tr>
<tr>
<td>IBM-5g</td>
<td>20.29</td>
<td>0.66</td>
<td>23.04</td>
<td>2.05</td>
</tr>
<tr>
<td>ITG-3g</td>
<td>20.18</td>
<td>4.36</td>
<td>21.99</td>
<td>7.01</td>
</tr>
<tr>
<td>ITG-4g</td>
<td>18.89</td>
<td>1.04</td>
<td>22.56</td>
<td>3.50</td>
</tr>
<tr>
<td>ITG-5g</td>
<td>20.31</td>
<td>1.11</td>
<td>22.39</td>
<td>2.38</td>
</tr>
<tr>
<td>NEW-3g</td>
<td>19.10</td>
<td>8.52</td>
<td>23.23</td>
<td>12.72</td>
</tr>
<tr>
<td>NEW-4g</td>
<td>20.38</td>
<td>1.70</td>
<td>22.03</td>
<td>5.29</td>
</tr>
<tr>
<td>NEW-5g</td>
<td>20.90</td>
<td>1.54</td>
<td>22.81</td>
<td>4.36</td>
</tr>
</tbody>
</table>
Results (2)

• Scores are similar to Pharaoh with some speed advantage
 – 2-4 times faster in base configuration

• Increased n-gram order didn’t always improve score
 – Largest decrease in speed between 3-gram and 4-gram

• Proposed reordering constraints result in good scores with fastest decoding times

• It is difficult to pick a winner out of the IBM or ITG constraints with respect to speed or accuracy
Real-Time Speech Translation System

- Use Galaxy Communicator Architecture as a common API to a variety of speech components
 - TTS: AT&T, Delta Electronics, Festival, Cepstral
 - ASR: MIT-LL, SONIC, Nuance
 - MT: MIT-LL

- Runs large vocab English ↔ Spanish task (Europarl) on a single laptop
Conclusion and Future Work

• Lessons learned
 – Fast decoding requires effective handling of reordering, either through better modeling and/or constraints
 – Prune the search graph early and often for maximum speed
 – “Real” systems require fast access to very large models;
 Berkeley DB makes this simple

• Future Work
 – Better reordering models (lexicalized or factored)
 – Additional language model support
 Class n-gram, large LMs (e.g. google n-gram), etc.