

An Efficient Graph Search Decoder for Phrase-Based Statistical Machine Translation

Brian Delaney, Wade Shen, and Timothy Anderson

28 November 2006

Introduction

- Efficient search remains an important goal for practical implementations of statistical machine translation
- Our goals were to create a decoder that:
 - Can be used in "real-time" speech translation
 - Can handle large vocabulary tasks at or near real-time
 - Enables easy integration with other speech components (ASR, TTS, etc.)
- Overview
 - Our implementation of a graph search decoder
 - Analysis of performance on the IWSLT-06 task

Decoder Highlights

The basics

- Uses phrase-based models with log-linear parameter combination
- A-star graph search with beam and histogram pruning

New features

- Decoding with up to 5-gram language model
- Output phrase lattice for optimization and rescoring
- On-demand disk-based models for decoding of large vocabulary speech input in real-time
- Reordering constraints for improved speed
- Galaxy Communicator API to interface with other speech components (i.e. ASR, TTS, Language ID, etc.)

Decoding Algorithm

Ci sono messaggi per me? → Are there any messages for me?

- Start state: No source words covered
- Select source/target phrase pairs from phrase table
- Expand nodes according to source coverage and LM context, using LM back-off structure
- Keep best path back pointer
- Back-trace along best path for 1-best result

Pruning and A-star Heuristic

- Standard beam and histogram pruning using best path score into each node
- All nodes that cover the same number of words are pruned together
- Because of distortion, "easy" words tend to get translated first
 - Need an estimate of future cost (A-star heuristic)
- Heuristic is based on words not yet translated
 - Same as with Pharaoh
 - Tried several enhancements to the Pharaoh:
 - Best case distortion for next phrase
 - Best/average language model expansion using current node context
 - Neither gave consistent improvement in accuracy or speed

On-The-Fly Beam Pruning

- Profiling revealed that computing language model scores at phrase boundaries is costly
 - This is done when considering a new hypothesis
 - Most of these hypotheses get pruned out immediately
- Solution
 - Keep track of best path cost during search loop
 - Skip translations whose partial scores (i.e. without language model) fall outside the beam
- Results in almost 2x speedup with a very little change in BLEU
- Sorting list of translations options upfront by the best future cost helps to find best translation faster
 - results in faster search

Phrase Reordering (1)

- To allow word movement, source words may be translated in any order
- Without any constraints, the search grows exponentially with sentence length
- Limiting word movement by some maximum helps reduce complexity
- Incomplete paths can occur, resulting in wasted search effort

Reordering graph for 4 input words with dlimit=2

Phrase Reordering (2)

- Additional reordering constraints (Zens 03)
 - IBM: only choose words or phrases that fill the first k unfilled words
 - ITG: do not allow "inside out" reordering patterns
- ITG + distortion limit can produce graph with incomplete paths
- IBM constraints do not have this problem

Reordering graph for 4 input words with IBM constraints (k=2)

Phrase Reordering (3)

- We implemented an additional reordering constraint that allows for fast decoding with reasonable accuracy
 - Choose a new phrase that covers some portion of the first available gap
 - any new gaps must be less than the allowed distortion limit
- Not strictly a phrase swap and more constrained than IBM
- Results in fast decoding with good accuracy
 - Ideal for real-time speech translation

Results (1)

	Language Pair					
Configuration	CE		JE		ΙE	
	BLEU	Chars/sec	BLEU	Words/sec	BLEU	Words/sec
Pharaoh	20.41	0.85	23.07	1.39	35.63	55.48
free-3g	20.19	2.99	22.79	5.39	35.90	113.36
free-4g	20.73	1.45	21.76	2.26	35.64	63.06
free-5g	20.39	1.23	21.99	1.65	36.92	42.93
IBM-3g	20.31	3.70	22.55	6.14	36.60	201.05
IBM-4g	20.15	0.92	21.64	2.04	36.77	124.09
IBM-5g	20.29	0.66	23.04	2.05	36.56	81.15
ITG-3g	20.18	4.36	21.99	7.01	35.70	162.99
ITG-4g	18.89	1.04	22.56	3.50	36.81	60.99
ITG-5g	20.31	1.11	22.39	2.38	36.78	48.45
NEW-3g	19.10	8.52	23.23	12.72	36.56	305.29
NEW-4g	20.38	1.70	22.03	5.29	36.96	216.92
NEW-5g	20.90	1.54	22.81	4.36	36.66	142.47

Results (2)

- Scores are similar to Pharaoh with some speed advantage
 - 2-4 times faster in base configuration
- Increased n-gram order didn't always improve score
 - Largest decrease in speed between 3-gram and 4-gram
- Proposed reordering constraints result in good scores with fastest decoding times
- It is difficult to pick a winner out of the IBM or ITG constraints with respect to speed or accuracy

Real-Time Speech Translation System

 Use Galaxy Communicator Architecture as a common API to a variety of speech components

TTS: AT&T, Delta
 Electronics, Festival,
 Cepstral

- ASR: MIT-LL, SONIC, Nuance

— MT: MIT-LL

Runs large vocab English ↔
 Spanish task (Europarl) on a single laptop

Conclusion and Future Work

Lessons learned

- Fast decoding requires effective handling of reordering, either through better modeling and/or constraints
- Prune the search graph early and often for maximum speed
- "Real" systems require fast access to very large models;
 Berkeley DB makes this simple

Future Work

- Better reordering models (lexicalized or factored)
- Additional language model support
 Class n-gram, large LMs (e.g. google n-gram), etc.