CASIA Statistical Machine Translation System for IWSLT 2008

Chengqing Zong NLPR, Institute of Automation Chinese Academy of Sciences <u>cqzong@nlpr.ia.ac.cn</u>

No.95, Zhongguancun East Road Beijing 100190, China

http://www.nlpr.ia.ac.cn Tel. No.: +86-10-6255 4263

Outline

- Our tasks
- □ System overview
- Technical modules
 - Preprocessing
 - Multiple translation engines
 - System combination
 - Rescoring
 - Post-processing
- **Experiments**
- Conclusions

Our tasks

We participated in:

- 1. Challenge task for Chinese-English
- 2. Challenge task for English-Chinese

3. BTEC task for Chinese-English.

System overview

- Using multiple translation engines
- Rescore the combination results to get the final translation outputs

- **Preprocessing**
 - Chinese
 - Chinese word segmentation
 - Transforming the Sexagesimal to Binary Converter (SBC) to Decimal to Binary Converter (DBC)
 - English
 - Tokenization of the English words separates the punctuations with the English words;
 - Transforming the uppercase into lowercase.

Phrase-based translation engines modeled in log-linear model

$$e^* = \arg\max_{e} \sum_{m=1}^{M} \lambda_m h_m(e, f)$$

- ✓ Phrase translation probability ;
- ✓Lexical phrase translation probability ;
- ✓Inversed phrase translation probability ;
- ✓Inversed lexical phrase translation probability ;
- ✓ English language model based on 3-gram ;
- ✓English sentence length penalty ;
- ✓ Chinese phrase count penalty.

- We use three phrase-based SMT:
 - In-home developed phrase-based decoder (baseline)
 - Moses decoder
 - Bandore: A sentence type based reordering decoder

- Preprocessing for PB SMT engine
 - SVM is employed to divide the source (Chinese) sentences into three types, different types of sentences are reordered using different models
 - Three types:
 - Special interrogative sentences
 - Other interrogative sentences
 - Non-question sentences

Architecture

- C1: special interrogative sentences
- C2: other interrogative sentences
- C3: non-question sentences

Special interrogative sentences

 There is a fixed question phrase at the end of Chinese sentence, which is moved to the first position in the English translation. (We call the question phrase as Special Question Phrase)

- Phrase-ahead reordering model moves the SQP to the frontal position in Chinese sentence
 - Two problems:
 - Identification of SQP
 - What position should SQP be moved to

- Special words in SQP
 - Some Chinese words indicate the sentence is a special interrogative sentence
 - Close set: 什么(what)、哪(where)、多(多长、 多久) (how long)、怎(how)、谁(who, whom, whose)、几(how many)、为什么(why)、何 (when)

- Definition of SQP:
 - The syntactic component containing a special word in the close set
- Identification:
 - Use a shallow parsing toolkit (FlexCrf) (http://flexCRF.sourceforge.net)

- Where should SQP be moved to?
 - Three possible positions:
 - The beginning of the sentence
 - After the rightmost punctuation before the SQP
 - After a regular phrase such as "请问 (May I ask)" and "你知道(Do you know)"

这 道 菜 <u>怎么 样</u>? How about this dish?

你好, 去海滩 怎么走? Hello, how can I get to the beach?

你知道到那里需要多长时间? Do you know how long it takes us to there?

If we have known the SQP, S becomes $S^0 SQP$ S^1 , where S^0 is the left part of the sentence before SQP, and S^1 is the right part of the sentence after SQP. Therefore, we have learned the reordering templates from bilingual corpus to find the right position in S^0 where SQP will be moved to.

- Other interrogative sentences
 - Some specific Chinese words like "会、能、 可以" are simply translated into "Can …", "Do …" or "May …" at the beginning of the English sentence.
 - This case is easy to process. So, we treat it as the no-question sentences

Non-question sentences

- Some phrases are usually moved back during translation
- Three types of Chinese phrases are usually moved after the verb phrase in English sentence: (1)Prepositional phrase (PP), (2) Temporal phrase, and (3)Spatial phrase (SP)

For the other interrogative sentences and non-question sentences, the phrase-back reordering model has been designed to move some phrases to the back positions

- Two problems:
 - Identification of PP, TP, SP and VP
 - Reordering rules

- Identification
 Use a shallow parsing toolkit (http://flexCRF.sourceforge.net)
- Reordering rules
 - Maximum entropy model is employed to decide whether a PP, TP or SP is moved back after VP

We develop a probabilistic reordering model to alleviate the impact of the errors caused by the parser when recognizing *PP*s, *TP*s, *SP*s and *VP*s. The form of phraseback reordering rules:

$$A: \quad A_1 X A_2 \Rightarrow \begin{cases} A_1 X A_2 & straight \\ X A_2 A_1 & inverted \end{cases}$$

 $A_1 \in \{PP, TP, SP\} , A_2 \in \{VP, FVP\}$

X is any phrases between A_1 and A_2 .

A Maximum Entropy Model is trained from bilingual spoken language corpus to determine whether A_1 should be moved after A_2 :

$$P(O \mid A) = \frac{\exp(\sum_{i} \lambda_{i} h_{i}(O, A))}{\sum_{O} \exp(\sum_{i} \lambda_{i} h_{i}(O, A))}$$

 $O \in \{straignt, inverted\}$, $h_i(O, A)$ is a feature, and λ_i is the weight.

The features include the leftmost, rightmost, and the POSs of A_1 and A_2 .

Other translation engines:

- Two formal syntax-based SMT engines:
 - HPB: A hierarchical phrase-based model
 - MEBTG : A maximum entropy-based reordering model
- A linguistically syntax-based SMT:
 - SAMT: A syntax-augmented machine translation decoder

We implement system combination on *N* Best list from multiple translation engines.

System combination

Rescoring

• Use global feature functions to score the new *n*-best list

- Direct and inverse IBM model 1 and model 3
- > 2, 4, 5-gram target language model
- 3, 4, 5-gram target pos language model
- Bi-word language model
- Length ratio between source and target sentence
- Question feature
- Frequency of its *n*-gram (*n*=1, 2, 3, 4) within *n*-best translations
- *n*-gram posterior probabilities within *n*-best translations.
- Sentence length posterior probabilities.

Post-processing

- The post-processing for the output results mainly includes:
 - Case restoration in English words
 - Recombination the separated punctuations with its left closest English words
 - Segmenting the Chinese output into characters

Corpus

- Besides the training data provided by IWSLT 2008, we collected all the data from the website of IWSLT2008.
- We extract the bilingual data which are highly correlative with the training data of each track.
- We also filter some development sentences and their reference sentences from all the released development data of the track as our development data according to the similarity calculation.

The detailed statistics of our corpus for

development set

Track	Data		Sen.	Running words	Voc.
CT	Train set	Chi	324,626	2.4M	11,214
CI		Eng	324,626	2.57M	9,488
CRR	Dev set	Chi	534	3,163	649
		Eng	3,204	22,861	1,132
CT EC CRR	Train set	Chi	311,438	2.28M	11,113
		Eng	311,438	2.42M	9,370
	Dev set	Chi	2275	15,266	797
		Eng	325	2,061	404
BTEC CE CRR	Train set	Chi	321,770	2.38M	11,202
		Eng	321,770	2.51M	9,493
	Dev set	Chi	764	4,899	910
		Eng	4,584	34,310	1,536

NLPR, CAS-IA 2008-10-23

ASR translation

- We first translate the ASR *n*-best list.
 - For our experiments the value *n*=5 is used
- We pass the translation results into our combination module and rescore all the translation hypotheses
 - With the feature functions of translation hypotheses plus the features of ASR

Results of development set for CT_CE track

	CRR		ASR		
	BLEU	NIST	BLEU	NIST	
PB	0.4505	7.4649	0.4732	7.4777	
MOSES	0.5048	7.9175	0.4980	7.7488	
Bandore	0.5033	8.0267	0.4651	7.4983	
MEBTG	0.4571	7.6887	0.4969	7.8267	
HPB	0.4412	6.8600	0.4536	7.4474	
СОМ	0.5109	8.1780	0.5093	8.0045	
Rescore	0.5741	8.3162	0.5787	8.7570	

Results of development set for BTEC_CE track

	CRR		ASR		
	BLEU	NIST	BLEU	NIST	
PB	0.4659	7.9333	0.4831	7.8623	
MOSES	0.5100	8.0298	0.4870	7.4720	
Bandore	0.5127	8.3513	0.4856	7.7699	
MEBTG	0.4717	7.8045	0.4915	7.7357	
HPB	0.4764	6.5603	0.4445	5.9105	
СОМ	0.5308	8.5689	0.5087	8.0778	
Rescore	0.6100	8.7823	0.5235	8.2364	

Results of development set for CT_EC track

	CRR		ASR		
	BLEU	NIST	BLEU	NIST	
PB	0.4385	7.0469	0.4350	7.3629	
MEBTG	0.4399	7.5303	0.4569	7.5691	
MOSES	0.4522	7.3626	0.4676	7.5165	
HPB	0.4298	7.0914	0.4544	7.5165	
СОМ	0.4555	7.6200	0.4578	7.5600	
Rescore	0.5242	7.7361	0.5011	7.9627	

Engines for combination on development set

	CT_CE		CT_EC		BTEC_CE	
	CRR	ASR	CRR	ASR	CRR	ASR
PB			\checkmark	\checkmark		\checkmark
MOSES	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Bandore	\checkmark	\checkmark			\checkmark	
MEBTG	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HPB					\checkmark	\checkmark

Results of test set for each track

- Con1 : our system combination
- Con2 : the rescoring module
- Primary: we RE-rescore "Con1" and "Con2" by using the feature of the prior probability of the length-ratio of source sentence to target sentence.

Track	System	CR	R	ASR	
		BLEU	NIST	BLEU	NIST
CT CE	Primary	0.4844	7.5859	0.4066	6.6384
	Con1	0.4803	7.4277	0.3750	6.3134
	Con2	0.4767	7.4237	0.4067	6.5887
CT EC	Primary	0.5122	7.3513	0.4312	6.6867
	Con1	0.4968	7.1525	0.4172	6.4864
	Con2	0.4817	6.7254	0.4162	6.4713
BTEC CE	Primary	0.5077	8.5389	0.4339	7.7247
	Con1	0.4842	8.4094	0.4303	7.6550
	Con2	0.5162	8.2884	0.4318	7.6203

The best performance relatively compared with PB decoder among the scores on development set.

System	Compared with PB
Bandore	11.72%
MEBTG	5.03%
HPB	4.45%

Conclusions

 Our system combines the output results of multiple machine translation engines and by using some global features we rescore the combination results to get the final translation outputs.

Conclusions

- In all the translation engines, Moses has a performance with considerable robust
- <u>Bandore</u> has an outstanding performance among the three engines
 - It uses Moses as its decoder
 - The reordering model of Bandore aims at the spoken language. It has an effective ability to translation in the domain of IWSLT.

Thanks

