

NTT SMT System for IWSLT 2008

Katsuhito Sudoh, Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki NTT Communication Science Labs., Japan

Overview

- 2-stage translation system
 - k-best translation candidates are generated by hierarchical phrase-based SMT
 - The top-best candidate is chosen by a reranker based on Ranking SVMs with large-scale sparse features
- Evaluation on Chinese-to-English challenge task

Stage 1: Translation

- Hiero (Chiang, CL 2007) : in-house implementation
 - Hierarchical phrase-based SMT
 - CKY-based decoder
 - Minimum Error Rate Training
 - Decoder features are same as our IWSLT '06 system
 - Hierarchical and lexical translation probabilities
 - Insertion, deletion, and reordering penalties
 - Length penalties (words / hierarchical phrases)
 - Word 5-gram language model scores

Stage 2: Reranking

- Reorder k-best translation candidates after decoding
 - Ranking SVMs with large scale sparse features
 - Incorporate *context features*
 - Difficult to use in decoding (e.g. MIRA-based method)

NTT () Ranking SVMs (Joachims, 2002)

- Ranking samples (not classification)
 - Trained using ordered k-best candidates $e_1^*, ..., e_k^*$
 - Metric: Approximated BLEU
 - Converted to top-best vs. non-best pairwise difference pairs *D*

$$-D = \{d_{ij} = e_i^* - e_j^* | e_i^* \in \langle \text{top-best} \rangle, e_j^* \in \langle \text{non-best} \rangle\}$$

$$D' = \{d_{ij} = e_i^* - e_j^* | 1 \le i < k, \ 1 < j \le k, \ i < j\}$$

- Optimizing classification SVMs on ${\cal D}$
- Test: choose highest-scored candidate

Approximated BLEU

- BLEU : document-wise score
 - Requires re-computation in every iteration
 - Not suitable for independently assigning scores to k-best candidates
- Approximated BLEU (Watanabe, IWSLT 2006)
 - Sentence-wise approximation of document-wise
 BLEU (not sentence-wise BLEU)
 - Independently calculated for each candidate
 - Constant throughout optimization

Reranker Features

- Intra-sentence features
 - Word alignments
 - Source-target word pairs aligned by IBM Model 1
 - Target-source direction was also considered
 - Alignment bigram : a(i)*a(i+1)
 - Word pairs
 - Arbitrary source-target unigram/bigram pairs within each sentence
 - Target-side skip bigrams

Reranker Features (cont'd)

- Inter-sentence feature
 - Context-dependent word pairs
 - Arbitrary pair of [target word unigram] and [source/target word unigram in the previous sentence]

Pegasos

- Fast optimization algorithm for linear-kernel SVMs (Shalev-Shwartz et al., ICML 2007)
 - Use sub-gradients calculated based only on k samples in each iteration
 - Learning time does *not* depend on data size

Post-evaluation

- Optimize SVM soft-margin parameter
 - 2-/3-fold cross validation on devset.CT_CE (246 sentences)
 - We didn't optimize it in the official evaluation!!
- Use the whole rank order in training R-SVMs
 - The whole rank order did not increase BLEU in our development phase

отт (Name and Series and Series

□ Official ■ Post-Eval. ■ Post-Eval.(whole rank order)

Results (Clean input)

□ Official ■ Post-Eval. ■ Post-Eval.(whole rank order)

Results : Summary

- Reranking with *optimized soft-margin parameters* achieved good BLEU results
- Alignment-independent features were effective
- Context features were *not* effective

Discussion

- Reranker chose **adequate** candidates
 - Word alignment features captured *lexical* correspondence
- Reranker chose **fluent** candidates
 - (Skip-)Bigram features captured target-side natural word order
 - Bigram pair features captured source-target cooccurrence of bigrams
- Reranker failed to utilize context information
 - Context features turned out to capture many general word co-occurrence

NTT 🕐

Distinctive Word Alignment Features

ST: ?-<EOS> / 吗 ST: 可以 / can ST: tell-me / 请问 ST: i-would / 我-想 ST: would-like / 想 ST: would-like / 有 ST: you-have / 有 ST: <BOS>-i / 我

TS: 吗-<EOS> / <\$.\$> TS: ? / 吗 TS: 吗-<EOS> / ? TS: 我-想 / i*like TS: 在-哪里 / where TS: 最近-的 / nearest^the

Distinctive Bigram Features

Bigram: ?-<EOS> Bigram: .-<EOS> Bigram: me-the BigramPair: <BOS>-我 / <BOS>-i BigramPair: <BOS>-我 / would-like BigramPair: 吗-<EOS> / <BOS>-can BigramPair : 吗-<EOS> / ?-<EOS> BigramPair: 多少-钱 / how-much BigramPair: 多少-钱 / ?-<EOS> BigramPair: <BOS>-能 / <BOS>-can BigramPair: 给-我 / give-me SkipBigram: would-*-to SkipBigram: <BOS>-*-would SkipBigram: <BOS>-*-can SkipBigram: do-*-have SkipBigram: tell-*-the

Distinctive Context Features

TargetContext: for ->? TargetContext: is -> ? TargetContext: a -> you TargetContext: i -> you TargetContext: . -> is TargetContext: ? -> can TargetContext: please -> ? TargetContext: , -> can SourceContext: 的 ->? SourceContext: — -> me SourceContext: 吗 -> me SourceContext: 我 ->.

Conclusion

- NTT's 2-stage SMT system
 - Hierarchical phrase-based SMT decoder
 - SVM-based reranker with sparse features
 - Achieved 39.71%(ASR), 44.97%(clean) BLEU in Chinese-to-English challenge task
 - Reranker effectively utilized both monolingual and bilingual sparse features
 - Current context-dependent features are not effective