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Overview

• 2-stage translation system

– k-best translation candidates are generated by 

hierarchical phrase-based SMT

– The top-best candidate is chosen by a reranker

based on Ranking SVMs with large-scale 

sparse features

• Evaluation on Chinese-to-English 

challenge task
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Stage 1: Translation

• Hiero (Chiang, CL 2007) : in-house implementation

– Hierarchical phrase-based SMT

– CKY-based decoder

–Minimum Error Rate Training

• Decoder features are same as our IWSLT ‘06 system

– Hierarchical and lexical translation probabilities

– Insertion, deletion, and reordering penalties

– Length penalties (words / hierarchical phrases)

– Word 5-gram language model scores
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Stage 2: Reranking

• Reorder k-best translation candidates after 

decoding

– Ranking SVMs with large scale sparse features

– Incorporate context features

• Difficult to use in decoding (e.g. MIRA-based method)
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Ranking SVMs (Joachims, 2002)

• Ranking samples (not classification)

– Trained using ordered k-best candidates
– Metric: Approximated BLEU

• Converted to top-best vs. non-best pairwise

difference pairs

–

• Optimizing classification SVMs on

– Test: choose highest-scored candidate
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Approximated BLEU

• BLEU : document-wise score

– Requires re-computation in every iteration

– Not suitable for independently assigning scores 

to k-best candidates

• Approximated BLEU (Watanabe, IWSLT 2006)

– Sentence-wise approximation of document-wise 

BLEU (not sentence-wise BLEU)

– Independently calculated for each candidate

– Constant throughout optimization
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Approximated BLEU (cont’d)
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Reranker Features

• Intra-sentence features

– Word alignments

• Source-target word pairs aligned by IBM Model 1

• Target-source direction was also considered

• Alignment bigram : a(i)*a(i+1)

– Word pairs

• Arbitrary source-target unigram/bigram pairs within 

each sentence

– Target-side skip bigrams
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Reranker Features (cont’d)

• Inter-sentence feature

– Context-dependent word pairs

• Arbitrary pair of [target word unigram] and 

[source/target word unigram in the previous 

sentence]
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Pegasos

• Fast optimization algorithm for linear-kernel 

SVMs (Shalev-Shwartz et al., ICML 2007)

– Use sub-gradients calculated based only on k 

samples in each iteration

– Learning time does not depend on data size
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Post-evaluation

• Optimize SVM soft-margin parameter

– 2-/3-fold cross validation on devset.CT_CE (246 

sentences)

– We didn’t optimize it in the official evaluation!!

• Use the whole rank order in training R-SVMs

– The whole rank order did not increase BLEU in 

our development phase
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Results (ASR 1-best input)
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Results (Clean input)
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Results : Summary

• Reranking with optimized soft-margin 

parameters achieved good BLEU results

• Alignment-independent features were 

effective

• Context features were not effective
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Discussion

• Reranker chose adequate candidates 

– Word alignment features captured lexical 

correspondence

• Reranker chose fluent candidates

– (Skip-)Bigram features captured target-side natural word 

order

– Bigram pair features captured source-target co-

occurrence of bigrams

• Reranker failed to utilize context information

– Context features turned out to capture many general 

word co-occurrence
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Distinctive Word Alignment Features
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Distinctive Bigram Features
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Distinctive Context Features
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Conclusion

• NTT’s 2-stage SMT system

– Hierarchical phrase-based SMT decoder

– SVM-based reranker with sparse features

– Achieved 39.71%(ASR), 44.97%(clean) BLEU

in Chinese-to-English challenge task

– Reranker effectively utilized both monolingual 

and bilingual sparse features

– Current context-dependent features are not 

effective


