

The TALP&I2R SMT Systems for IWSLT 2008

Maxim Khalilov¹, Marta R. Costa-jussà¹, Carlos A. Henríquez¹, José A.R. Fonollosa¹, Adolfo Hernández¹, José B. Mariño¹, Rafael E. Banchs¹, Chen Boxing², Min Zhang², Aiti Aw² and Haizhou Li²

¹TALP Research Center

Universitat Politècnica de Catalunya, Barcelona

{khalilov|mruiz|carloshq|adrian|adolfohh|canton|rbanchs}@talp.upc.edu

²Department of Human Language Technology Institute for Infocomm Research, Singapore

{bxchen|mzhang|aaiti|hli}@i2r.a-star.edu.sg

ABSTRACT

UPC TALP Research Center participated in the Arabic-English task and together with the I2R participated in Chinese-Spanish translation and pivot Chinese-(English)-Spanish translation. The novelties we have introduced are:

- 1. improved reordering method for an Ngram-based system,
- 2. linear combination of translation, reordering and target models for domain adaptation,
- 3. new technique dealing with punctuation marks insertion, and
- 4. concatenation strategy for PIVOT translation for a phrase-based SMT system.

1 BASELINE SYSTEMS

$$\mathbf{e}^* = \arg\max p(\mathbf{e}|\mathbf{f}) = \arg\max_{e} \{exp(\sum_{i} \lambda_i h_i(\mathbf{e}, \mathbf{f}))\}$$

- Bilingual Ngram Translation Model [Marino et al, CL'06] (TALPtuples)
- The translation model is based on bilingual n-grams.
- -Bilingual units, i.e. tuples, are extracted from a word-to-word aligned corpus according to:
- 1. Tuple extraction should produce a monotonic segmentation of bilingual sentence pairs;
- 2. No smaller tuples can be extracted without violating the previous constraint.
- Bilingual Phrase Translation Model: MOSES System [Koehn et al, 07] (*TALP-phrases*)
- The translation model is based on phrases.
- -Bilingual units, i.e. phrases, are extracted from a word-to-word aligned corpus according to:
- 1. Words are consecutive along both sides of the bilingual phrase,
- 2. No word on either side of the phrase is aligned to a word out of the phrase.
- Feature funcions: in addition to the translation model, the baseline system implements a combination of feature functions.

2 REORDERING TECHNIQUE (SMR)

• The conception of the Statistical Machine Reordering (SMR) stems from the idea of using the powerful techniques developed for SMT and to translate the source language (S) into a reordered source language (S'), which more closely matches the order of the target language.

• To infer more reorderings, it makes use of word classes and to correctly integrate the SMT and SMR systems, both are concatenated by using a word graph which offers weighted reordering hypotheses to the SMT system.

3 ARABIC-TO-ENGLISH TASK

3.1 TRANSLATION INTERPOLATION (POST-EVALUATION)

• We used an out-of-domain corpus to increase the final translation and reordering tables. We performed a linear combination of the translation, reordering and target models.

3.2 PUNCTUATION RESTORATION (PRIMARY)

• We embeded punctuation restoration in the main translation step. SRC: $w_1 \ w_2 \ w_3$. \rightarrow <PUNC> $w_1 \ w_2 \ w_3$ <PUNC> TRG: $w_1 \ w_2 \ w_3$. \rightarrow . $w_1 \ w_2 \ w_3$.

3.3 EXPERIMENTS

- -MADA+TOKAN system for disambiguation and tokenization.
- -The out-of-domain was a 130K-line subset from the Arabic News, English Translation of Arabic Treebank and Ummah LDC parallel corpora (*VIOLIN*) [Habash et al. 08].
- Primary system: the *TALPphrases* MOSES-based system enhanced with the punctuation marks repetition technique.
- -Secondary system: *TALPtuples* system, configured to use the bilingual TM of order 4, 4-gram target-side LM and 4-gram POS target-side LM. It includes SMR with 100 statistical classes.
- -Post-evaluation system: the *TALPphrases* MOSES-based system enhanced with the punctuation marks repetition and interpolation technique.

Track	System	BLEU	METEOR	Average
CRR	Union (Post-evaluation)	0.5223	0.6809	0.6016
CRR	Supplied 1 (Primary submission)	0.5263	0.6848	0.6055
CRR	Interpolation (Post-evaluation)	0.5446	0.6974	0.6210
CRR	Supplied 2 (Secondary submission)	0.4976	0.6807	0.5892
ASR		0.4379	0.6262	0.5320
ASR	Supplied 1 (Primary submission)	0.4352	0.6288	0.5320
ASR	Interpolation (Post-evaluation)	0.4562	0.6385	0.5473
ASR	Supplied 2 (Secondary submission)	0.4300	0.6292	0.5296

4 CHINESE-(ENGLISH)-SPANISH PIVOT TRANSLATION

4.1 SYSTEM CASCADE (PRIMARY)

- Using the 50-best list of translation hypotheses generated by the decoder for the Chinese-to-English system,
- a 4-best list was made for each of the first list instances,
- -totally representing a 200-best of possible Spanish translations for each Chinese sentence.

The single-best translation was computed using a Minimum Bayes Risk (MBR) strategy [Kumar et al, 2004]

4.2 PHRASE PROBABILITIES COMBINATION (SECONDARY)

-Combination of the phrase translation probabilities of the two language pairs (Chinese-English and English-Spanish translations) with the strategy proposed [Wu and Wang, 2007] to obtain the translation probabilities for each Chinese-Spanish phrase. The final phrase probabilities were calculated as follows:

4.3 EXPERIMENTS

- Word segmentation for the Chinese part using ICTCLAS tools
- -For the Chinese-English, the out-of-domain corpora was: the HIT corpus (132K sentence pairs); Olympic corpus (54K bilingual sentences); PKU-corpus (200K parallel phrases); and the English part of the Tanaka corpus.

Track	System	BLEU	METEOR	Average
CRR	Primary	0.3878	0.3358	0.3618
CRR	Secondary	0.3455	0.3084	0.3270
	Primary			
ASR	Secondary	0.3063	0.2828	0.2946

5 CHINESE-TO-SPANISH DIRECT TRANSLATION

5.1 EXPERIMENTS

- Primary system: *TALPtuples* system, configured as in the Arabic-English task.
- Secondary system: the *TALPphrases* MOSES-based system.

Track	System	BLEU	METEOR	Average
CRR	Primary	0.2677	0.2901	0.2789
CRR	Secondary	0.2911	0.3007	0.2959
	Primary			0.2574
ASR	Secondary	0.2684	0.2792	0.2783

6 CONCLUSIONS

- Arabic-English: the domain adaptation using linear interpolation of translation, reordering and target models shows improvements in CRR and ASR.
- -Chinese-(English)-Spanish: the system cascade architecture demonstrates better results than the alternative (phrase probabilities combination), however there is still room for improvement on phrase table pruning.
- -Chinese-Spanish: Although the direct Chinese-Spanish phrase-based system performed better than the TALPtuple system on the internal test, we submitted the last one as a primary system in order to contrast it the many other MOSES-based strategies presented in the evaluation.