
H-48928

ＭＯＤＥＬ ７６８０Ｂ

Versatile Scientific Sampling Processor
Ｋ５/ＶＳＳＰ３２

Driver Software

Manual

Japan Communication Equipment Co., Ltd.

H-48928

 1

1 Introduction
The textbook describes the driver of USB device ”Time synchronous data sampler

" that was programmed in order to operate under the Linux Kernel 2. 6 series.

2 Operational verification environment
l Debian GNU / Linux 5.0 (kernel 2. 6. 26 - 1 - 686) i686 platform¹²

l The sampling data is retained at binary type in the local hard disk.

1 The operation is only confirmed under the software development environment “Debian GNU / Linux 5.0 (kernel
2. 6. 26 - 1 - 686)“.
2 The operation in the multiprocessor system, or the operation if you installed the multiple target samplers in the
same PC is not corresponded to.

H-48928

 2

3 Directory /File constitution
The constitution of Directory/file that thaws the archive which was created by tar

+ gzip is as follows.
vlbi-usb-linux-1.18/
 |
 + Makefile
 + doc /
 | |
 | + Makefile Makefile for instruction manual compilation
 | |
 | + manual.pdf Manual (PDF type)
 | |
 | + manual.ps Manual (PostScript type)
 | |
 | + manllal.tex Manual (LaTex source)
 |
 + driver /
 | |
 | + Makefile Makefile for builds UTDS Driver
 | |
 | +utds.c UTDS Driver source file
 |
 + examples /
 | |
 | +Makefile Makefile for build Sample program
 | |
 | +*.c Sample program（C source）
 |
 + include /
 | |
 | + tdsio.h UTDS driver I / O Control command file
 | |
 | + tdssdh . h Header format defined file of sampling data of time synchronous type data
sampler
 |
 + libtds /
 |
 +Makefile Makefile for build library
 |
 + 1ibtds.c library source file

H-48928

 3

4 Loadable modules
4.1 Create the loadable module

(a) Decompress vlbi-usb-linux-1.18.tar.gz and move the files to
vlbi-usb-linux-1.18.

tar xvfz vlbi-usb-linux-1.18.tar.gz

 # cd vlbi-usb-linux-1.18/

(b) Construct the module and install. At the same time build the library and

install it.

 # make

 # make install

(c) Create the device node.

cd /dev

mknod -m 666 utds0 c 180 222

The device file becomes to (/dev/utds0). When udevd is operational on Linux,

it is not necessary to create the device node.

(d) Load the module.

insmod /lib/modules/2.6.26-1-686/kernel/drivers/usb/misc/utds.ko

5 Install files

By execute “make install”, the following files are installed to the respective place.

tds.ko / lib / modules / 2.6.26 -1 -686 / kernel / drivers / usb / misc / utds.ko

tdsio.h / usr / include / sys / tdsio.h

tdssdh.h / usr / include / sys / tdssdh.h

libtds . 50 / usr / local / lib / libtds .so

kondo
引き出し線
replace here by your kernel version that can be obtained by "uname -r"

kondo
線

H-48928

 4

6 System call interface
6.1 Supporting system call

1. open ()

2. close ()

3. read ()

4. ioctl ()

6. 2 Using examples for system call

As follows, there shows examples of each system call. Other system calls which

has not been described is according to the specification of system call of Linux

Kernel 2.6 series.

1. open ()

 Open the device and return the file descriptor. Device name and open mode are

appointed to argument. Since this device is read-only, so O_RDONLY should

be appointed to parameter “open mode”.

(Example)

int fd ;

fd = open (' " / dev / utds0 ", 0 _ RDONLY)

2. close ()

Close the device. Appoint the return value of open () to file descriptor parameter

 (Example)

close(fd);

H-48928

 5

3. read ()

Read the data from the opend device. Appoint file descriptor (the return value

of open ()), buffer address and buffer size for data reading. The size (bytes) of the

data read will be returned.

(Example)

int nread ;
unsigned int buffer [1024] ;

int nbyte = sizoef (buffer) ;

nread = read (fd , buffer , nbyte)

4. ioctl ()

Do the various operations of device. Appoint file descriptor (the return value

of open ()) to 1st argument, the operation should be done to 2nd argument and

the other parameters when necessary.

l Initialization

Initialize parameters inside device driver. TDSIO _ INIT should be

appointed to 2nd argument. When this operation is executed, it becomes

state as follow.

--When the number of channels setting has not be done (C.f. 4)

--When bits several setting have not be done (C.f. 4)

--When filter frequency setting has not be done（C.f. 4）

--When sampling frequency setting has not be done（C.f. 4）

--When 1PPS Synchronization has not be done（C.f. 4）

--When time setting has not be done（C.f. 4）

--When error information is reseted（C.f. 4）

(Example)

ioctl (fd , TDSIO _ INIT) ;

H-48928

 6

l Sampler FIFO Clearing

Clear the FIFO on the sampler . TDSIO _ BUFFER _ CLEAR should be

appointed to 2nd argument.

(Example)

ioctl (fd , TDSIO _ BUFFER _ CLEAR) ;

l 1PPS Synchronization

Do the Synchronization of the external 1PPS input signal.

TDSIO_SYNC_IPPS should be appointed to 2nd argument. When it

cannot detect the external 1PPS input signal, error occurs.

(Example)

ioctl (fd , TDSIO _ SYNC _ IPPS) ;

l Time setting.

Set the time to the sampler. TDSIO _ SET _ TIME should be appointed to

2nd argument, and the address of the variable which keeps the time data

(32bit) should be appointed to 3rd argument.

The type of time appoints subordinate 17 bits (obit - 16bit) at total

second from 00: 00: 00 and 18bit - 27bit (9bit width) at total days from

January 1st.³

A simple macro is prepared below.
Macro Function
TDS_MAKE_TIME
(day, sec)

With day (total days from January 1st)
and sec (Total second from 00: 00: 00),
appropriate value will be created.

(Example)

/ * When 2000/09/22 14: 39: 28 is appointed */

unsigned int time ;

unsigned int day

H-48928

 7

unsigned int sec

day = 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 22;

sec = ((14 * 60)＋39) * 60 + 28;

time = TDS_MAKE_TIME (day , sec)

ioctl (fd , TDSIO_SET_TIME , & time) ;

³The same type of the time that is appointed when writing in to the device register

H-48928

 8

l Time acquisition.

Acquire the time that the sampler keeps. TDSIO_GET_TIME should be

appointed to 2nd argument, and the address(32bit) of the variable which

houses the time data that is acquired should be appointed to 3rd

argument. As for type of the time data that is acquired, similar to the

type in time setting.

A simple macro is prepared below.

Macro Function
TDS_GET _SEC (arg) Get the total seconds from 00: 00:

00, from the argument arg
TDS_GET _SEC_CARRY
(arg)

Get the carry bit of the number of
total seconds from the argument
arg. The result will be 0 or 1.

TDS_GET_DAYS (arg) Get the Total days from January
1st from the argument arg.

TDS_GET_DAYS_CARBY
(arg)

Get the carry bit of the number of
total days from the argument
arg. The result will be 0 or 1.

(Example)

unsigned int time ;

unsigned int day;

unsigned int sec;

ioctl (fd , TDSIO_GET_TIME , & time) ;

day = TDS_GET_DAYS (time) ;

sec = TDS_GET_SEC (time) ;

l Year information setting

Set the year information to the sampler. TDSIO_GET_YEAR should be

appointed to 2nd argument, and the address(32bit) of the variable that

houses the year data should be appointed to 3rd argument.

(Example)

unsigned int year ;

H-48928

 9

ioctl (fd , TDSIO _ SET _ YEAR , & year)

l Year information acquisition.

Get the year information that the sampler keeps. TDSIO_ GET_YEAR

should be appointed to 2nd argument, and the address(32bit) of the

variable that houses the year data should be appointed to 3rd argument.

(Example)

unsigned int year ;

ioctl (fd , TDSIO_GET_YEAR , & year)

l Channel several setting.

Set the number of channels that do sampling. TDSIO_SET_CHMODE

should be appointed to 2nd argument, and the address (32bit) of the

variable that keeps the information of channel several setting should be

appointed to 3rd argument.

--Channel several appointments
The number of channels Designated macro
1ch TDSIO_SAMPLING_1CH
4ch TDSIO_SAMPLING_4CH

(Example)

/ * When 4ch is set*/

unsigned int chmode;

chmode = TDS IO_SAMPLING_4CH ;

ioctl (fd , TDSIO_SET_CHMODE , & chmode) ;

H-48928

 10

l Bit number setting.

Set the bit number that does sampling. TDSIO_SET_RESOLUTIONBIT

should be appointed to 2nd argument , and the address(32bit) of the

variable that keeps the information of bit number setting should be

appointed to 3rd argument.

-- Data width appointments
Bit number Designated macro
1bit TDSIO_SAMPLING_1BIT
2bit TDSIO_SAMPLING_2BIT
4bit TDSIO_SAMPLING_4BIT
8bit TDSIO_SAMPLING_8BIT

(Example)

/ * When 1bit is set */

unsigned int resolutionbit ;

resolutionbit = TDSIO_SAMPLING_1BIT ;

ioctl (fd , TDSIO_SET_RESOLUTIONBIT ,& resolutionbit);

l Filter frequency setting.

Set the filter frequency that does sampling. TDSIO_SET_FILTER should

be appointed to 2nd argument, and the address(32bit) of the variable

that keeps the information of filter frequency setting should be appointed

to 3rd argument.

-- Filter frequency appointments
Filter frequency assignment Designated macro
16M TDSIO_SAMPLING_16M
8M TDSIO_SAMPLING_8M
4M TDSIO_SAMPLING_4M
2M TDSIO_SAMPLING_2M
Thru TDSIO_SAMPLING_THRU

(Example)

/ * When Thru is set */

unsigned int filter ;

H-48928

 11

filter = TDSIO_SAMPLING_THRU ;

ioctl (fd , TDSIO _ SET _ FILTER , & filter) ;

l Sampling setting.

Set the sampling frequency that does sampling. TDSIO_SET_FSAMPLE

should be appointed to 2nd argument, and the address(32bit) of the

variable that keeps the information of sampling frequency setting should

be appointed to 3rd argument.

-- Frequency assignment

Sampling frequency Designated macro
40kHz TDSIO_SAMPLING_40KHZ
100kHz TDSIO_SAMPLING_100KHZ
200kHz TDSIO_SAMPLING_200KHZ
500kHz TDSIO_SAMPLING_500KHZ
1MHz TDSIO_SAMPLING_1MHZ
2MHz TDSIO_SAMPLING_2MHZ
4MHz TDSIO_SAMPLING_4MHZ
8MHz TDSIO_SAMPLING_8MHZ
16MHz TDSIO_SAMPLING_16MHZ

(Example)

/ * When 1MHz is set */

unsigned int fsample ;

fsample = TDSIO_SAMPLING_1MHZ ;

ioctl (fd , TDSIO _ SET _ FSAMPLE , & fsample)

H-48928

 12

l Channel several setting acquisitions

Get the present channel several setting. TDSIO_GET_CHMODE should

be appointed to 2nd argument, and the address(32bit) of the variable

that keeps the information of the setting that is acquired should be

appointed to 3rd argument. Information of channel several setting which

are obtained will be the same type as those which are appointed at the

time of channel several setting of 4.

(Example)

unsigned int chmode ;

ioctl (fd , TDSIO_GET_CHMODE , & chmode) ;

if (chmode = = TDSIO_SAMPLING_4CH) {

/ * 4CH * /

}

l Bit number setting acquisition

Get the present bit number setting. TDSIO_GET_RESOLUTIONBIT

should be appointed to 2nd argument, and the address(32bit) of the

variable that keeps the information of the setting that is acquired should

be appointed to 3rd argument. Information of the bit number setting that

is obtained will be the same type as those that are appointed at the time

of bit number setting of 4.

(Example)

unsigned int resolutionbit

ioctl (fd , TDSIO _ GET _ RESOLUTIONBIT ，&resolutionbit) ;

if (resolutionbit = = TDSIO_SAMPLING_4BIT) {

/ * 4Bit * /

}

H-48928

 13

l Filter frequency setting acquisition

Get the present filter frequency setting. TDSIO_GET_FILTER should be

appointed to 2nd argument, and the address (32bit) of the variable that

keeps the information of the setting that is acquired should be appointed

to 3rd argument. Information of the filter frequency setting that is

obtained will be the same type as those that are appointed at the time of

filter frequency setting of 4.

(Example)

unsigned int filter ;

ioctl (fd , TDSIO_GET_FILTER , & filter)

if (filter = = TDSIO _ SAMPLING _ THRU) {

 / * Thru * /

}

l Sampling frequency setting acquisition

Get the present sampling frequency setting. TDSIO_GET_FSAMPLE

should be set to 2nd argument, and the address(32bit) of the variable

that keeps the information of the setting that is acquired should be

appointed to 3rd argument. Information of the sampling frequency

setting that is obtained will be the same type as those that are appointed

at the time of sampling frequency setting of 4.

(Example)

unsigned int fsample ;

ioctl (fd , TDSIO_GET_FSAMPLE, & fsample) ;

if (fsample = = TDSIO _ SAMPLING _ 4MHZ) {

 / * 4MHz * /

}

H-48928

 14

l Acquisition of status

Get the status information of the sampler. TDSIO_GET_STATUS should

be set to 2nd argument, and the address(32bit) of the variable that keeps

the status information should be appointed to 3rd argument.4

(Example)

unsigned int stat ;

ioctl (fd , TDSIO_GET_STATUS, & stat) ;

l Start of sampling

Indication to start the sampling . TDSIO_SAMPLING_START should be

appointed to 2nd argument.

(Example)

ioctl (fd , TDSIO_SAMPLING_START) ;

4 The status information that is obtained reaches the value that is obtained from the register the
sampler has.

H-48928

 15

l Sampling stop

Indication to stop the sampling. TDSIO_SAMPLING_STOP should be

appointed to 2nd argument.

Furthermore, when all of the process which has opened the device

(open()) is terminated on host PC, sampling will be stopped

automatically.

(Example)

ioctl (fd , TDSIO_SAMPLING_STOP) ;

l DC offset setting

Set the present DC offset value. TDSIO_SET_DCOFFSET should be

appointed to 2nd argument, and the address of the structure (struct

tdsio) that houses the setting information should be appointed to 3rd

argument.

If you want to get the value of DC offset (1CH), 0 should be set to the

member key of struct tdsio, else if you want to get the value of 2CH, 1

should be set.

(Example)

struct tdsio tdsio ;

tdsio.key = 0 ; / * DCoffset 1 * /

tdsio.value = 0x10 ;

ioctl (fd , TDSIO_SET_DCOFFSET, & tdsio) ;

Dc offset acquisition

Get the present DC offset value setting. TDSIO_GET_DCOFFSET

should be appointed to 2nd argument, and the address of the structure

(struct tdsio) that houses the setting information should be appointed to

3rd argument.

 If you want to get the value of DC offset (1CH), 0 should be set to the

member key of struct tdsio, else if you want to get the value of 2CH, 1

should be set.

H-48928

 16

(Example)

struct tdsio tdsio ;

tdsio.key= 0 ; / * DCoffset 1 * /

ioctl (fd , TDSIO_GET_DCOFFSET, & tdsio)

tdsio.key= 1 ; / * DCoffset 2 * /

ioctl (fd , TDSIO_GET_DCOFFSET, & tdsio)

l Sampler FIFO reset

Reset the FIFO on the sampler. TDSIO_BUFFER_RESET should be

appointed to 2nd argument.

(Example)

ioctl (fd , TDSIO_BUFFER_RESET) ;

l 1PPS input status check

Check the 1PPS input state to the sampler. TDSIO_GET_1PPSINPUT

should be appointed to 2nd argument.

(Example)

unsigned int pps

ioctl (fd , TDSIO _ GET _ IPPSINPUT , & pps)

if (pps = = 0 {

/ * no 1PPS Input * /

}

H-48928

 17

l Reference signal input status check

Check the reference signal input state to the sampler.

TDSIO_GET_REFINPUT should be appointed to 2nd argument.

(Example)

unsigned int ref ;

ioctl (fd , TDSIO_GET_REFINPUT, & ref) ;

if (ref ==0) {

/* no Ref Input * /

}

l 5 / 10MHz Input signal decision

It checks whether the reference signal input to the sampler is 5MHz or

10MHz.In case of 5MHz 1, in case of 10MHz 0 will be set.

TDSIO_GET_10MHZINPUT should be appointed to 2nd argument.

(Example)

unsigned int rhz ;

ioctl (fd , TDSIO _ GET _ 10MHZINPUT , & rhz) ;

if (rhz = = 0) {

/ * 10MHz * /

}

l AUX Data setting

Set the AUX data .TDSIO_SET_AUX should be appointed to 2nd

argument, and the address of the structure (struct tdsauxio) that houses

the AUX data should be appointed to 3rd argument.

H-48928

 18

The size of AUX data will be set to member auxsize, and The AUX data

will be set to member auxfield. The maximum data size that can be set to

auxfidd is 256 bytes.

(Example)

struct tdsauxio tdsauxio ;

tdsauxio . auxsize = 10 ;

memcpy (tdsio . auxfield , “ TEST AUX ! “ , tdsauxio . auxsize)

ioctl (fd , TDSIO_SET_AUX, & tdsauxio) ;

l AUX Data acquisition

Get the AUX data. TDSIO_GET_AUX should be appointed to 2nd

argument, and the address of the structure (struct tdsauxio) that houses

the AUX data should be appointed to 3rd argument. After the acquiring,

you can get the size of the AUX data from member auxsize and you can

also get the AUX data from member auxfield.

(Example)

struct tdsauxio tdsauxio ;

char buf [256] ;

ioctl (fd , TDSIO_GET_AUX, & tdsauxio) ;

memcpy (buf , tdsio . auxfield , tdsauxio . auxsize) ;

l Error information acquisition

Get the information of the error that occurs when operate the device.

TDSIO_GET_ERROR should be appointed to 2nd argument, and the

address(32bit) of the variable which houses the error information should

be appointed to 3rd argument.

H-48928

 19

Immediately after host PC boots , or when 4 initialization is executed,

error information will be reset. After that,When error occurs, the

information of that error type will be kept. When furthermore errors

occur, the information will be overwrited. Therefore,the value you get

by Error information acquisition only indicates the type of the error that

occurs most recently.

Error classification has defined below.5

5 vlbi - usb - linux / include / tdsio.h reference

H-48928

 20

Error value Error classification

0 No error.(Normal)
1 The error is not applicable to the classification below.

2 Operation or the parameter not supporting was
appointed.

3 The operation that should be done after sampling started
was appointed when sampling has not been started.

4 The operation that should be done before sampling start
was appointed after sampling has been started.

5
The operation that should be done when sampling setting
(frequency/data width/the number of channels) is done
was appointed when setting is not be done.

6 FIFO on the board overflowed.
7 The external 1PPS input signal can not be detected.
8 The external 10MHz input signal can not be detected.
9 The external time input signal can not be detected.

10 The operation that should be done after synchronization
of 1PPS was appointed when 1PPS is not synchronized

11
The operation that should be done after time
synchronization or time setting was appointed before
time synchronization or time setting.

12 Try to execute read () ,when it is executed by other
process.

13 The error when the extended board for the PCI board is
not connected.

14 The DMA buffer is not enough.
15 Error when I/O processing with the user land.
16 DMA processing error.
17 No response from the data sampler during fixed time.
18 Detected the data that has not aligned at the word unit

19 The header was not found in the position where you
suppose inside the sampling data.

20 The header and the recognition possible data existed
even in the rubbish data when starting the sampling.

(Example)

int err ;

ioctl (fd , TDSIO _ GET _ ERROR , & err);

H-48928

 21

l The register reading

It reads the value of the optional register. TDSIO_DEGIO_READ should

be appointed to 2nd argument, and the address of the structure (struct

tdsio _regio) that houses the value of the register should be appointed to

3rd argument.

After reading out, register address will be housed in member

address,present value will be housed in member value.

(Example)

struct tdsio _ regio regio

ioctl (fd , TDSIO _ REGIO _ READ , & regio) ;

printf (“address = ox % 02x , value = ox % 02x ¥ n“ , regio.address ,

regio.value)

l Version information reading,

It reads out the version information value of the driver.

TDSIO_GET_VERSION should be appointed to 2nd argument, and the

address of the variable which houses the version information should be

appointed to 3rd argument. Version information consists of three

values ,the major, the minor, and the revision number. To get the

respective number, use the following macro.

TDS _VERSION_MAJOR () The macro which gets the MAJOR number
TDS _VERSION_MINOR () The macro which gets the MINOR

number
TDS_VERSION_REVISION () The macro which gets the REVISION

number

(Example)

uint32 _ t version ;

ioctl (fd , TDSIO _ GET _ VERSION , & version) ;

H-48928

 22

printf (“ version = % 02d . % 02d . % 02d ¥ n “, TDS_VERSION_MAJDR

(version), TDS _ VERSION _ MINOR (version), TDS _ VERSION _

REVISION (version));

l FPGA version information reading,

It reads out the FPGA version information value of the driver.

TDSIO_GET_VERFPGA should be appointed to 2nd argument. The most

significant 2-bit of returned data indicates major version number, the

least significant 6-bit of returned data indicates major version number

(Example)

unsigned int fpgaver ;

unsigned char major, minor ;

ioctl (fd , TDSIO _ GET _ VERFPGA , & fpgaver) ;

major = fpgaver >> 6 ;

minor = fpgaver & 0x3f ;

l Bit shift information setting

Sets the bit shift information to the sampler. TDSIO_SET_BITSHIFT

should be appointed to 2nd argument.

(Example)

/ * When bit shift is 2 */

unsigned int bitshift ;

bitshift = 2 ;

ioctl (fd , TDSIO _ SET _ BITSHIFT , & bitshift)

l Bit shift information acquisition.

Gets the bit shift information from the sampler. TDSIO_GET_BITSHIFT

should be appointed to 2nd argument.

H-48928

 23

(Example)

unsigned int bitshift ;

ioctl (fd , TDSIO_GET_YEAR , & bitshift)

if (bitshift == 0) {

/ * Bit Shift Setting is 0 */

}

7 Sample program
Please refer to example.c as a sample program below Vlbi - usb - linux/sample.

8 Library
The library to abstract the system call is created. The library will be built,

installed with driver module.

8. 1 Notice when using

When the library is been used, it is necessary to make like below.

l Include < sys/tdsio.h >.

In source file, describe as this

include < sys / tdsio.h >

l Link libtds.

When linking -ltds is appointed to option.

H-48928

 24

8.2 Use of library function

Usage of each library function are as follows. The UTDS driver does not support

the function of part as for which is left as compatibility to the TDS drivers for

9260 data sampler.

1. TdsOpen ()

Open the device.
Argument 1 char *(Character) Device name is appointed.

When NULL is appointed, with
default " Dev/tds0 " is used.

Return value tdsdev_t * As for details of this variable, it
is not necessary to have been
concerned on user side. When it
fails in opening, NULL is
returned. Below, it utilizes this
return value, with all library
functions as argument.

2. TdsClose ()
Close the device.
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Return value int When it succeeds, 0 is returned.

3. TdsInit ()
Initialize the variable inside the driver
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Return value int When it succeeds, 0 is returned. When it

fails, value other than 0 is returned

4.TdsClrBuffer ()

Initialize FIFO on the sampler
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Return value int When it succeeds, 0 is returned. When it

fails, value other than 0 is returned

5. TdsSync1pps ()

Synchronize external 1PPS input signal
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Return value int When it succeeds, 0 is returned. When it

fails, value other than 0 is returned

H-48928

 25

6. TdsSyncTime ()

Synchronize external time input signal
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Return value int When it succeeds, 0 is returned. When it

fails, value other than 0 is returned

7. TdsSetTime ()

 Set time to the sampler.
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Argument 2 tds _time_t Appointing the address of the variable

that keeps time. When NULL is
appointed,use the time get from OS .

Return value int When it succeeds, 0 is returned. When it
fails, value other than 0 is returned

The definition of tds_time_t is as follows.

struct tds _time {

int sec ;

int sec_carry ;

int day ;

int day _carry ;

};

typedef struct tds_time tds_time_t ;

sec Total seconds From 00: 00: 00
sec_carry Carry of second. If there is carry, 1, or not, 0. but in case

of time setting, value of this field is ignored.
day Total days from January 1st
day_carry Carry of day. If there is carry, 1, or not, 0. but in case of

time setting, value of this field is ignored.

8. TdsGetTime ()

Get the time which the sampler keeps .
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Argument 2 tds _time_t

*
Address of the variable that houses time
is appointed.

Return value int When it succeeds, 0 is returned. When it
fails, value other than 0 is returned

About the type definition of (tds _ time _t), referring to 7.

H-48928

 26

9. TdsSetYear ()

Set year information to the sampler.
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Argument 2 unsigned

int *
Address of the variable which houses
year information is appointed

Return value int When it succeeds, 0 is returned. When it
fails, value other than 0 is returned

10. TdsGetYear ()

Get the year information which the sampler keeps.
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Argument 2 unsigned

int *
Address of the variable which houses
year information

Return value int When it succeeds, 0 is returned. When it
fails, value other than 0 is returned

11. TdsSetSamPling () 6

Do Sampling setting
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Argument 2 tds _samp_t

*
Address of the variable that keeps
sampling setting.

Return value int When it succeeds, 0 is returned. When it
fails, value other than 0 is returned

Type definition of tds_samp_t is as follows.

struct tds_samp {

int freq;

int unit; / * ' k ' or ' M ' * /

int width ;

int channel ;

};

typedef struct tds_ samp tds_samp_t ;

6 MODEL 9270, 7680B does not support

H-48928

 27

freq,

unit

Appointe sampling frequency is
Frequency freq Unit
40kHz 40 ’k’
100kHz 100 ’k’
200kHz 200 ’k’
500kHz 500 ’k’
1MHz 1 ’M’
2 MHz 2 ’M’
4 MHz 4 ’M’
8 MHz 8 ’M’
16 MHz 16 ’M’

width Appointe sampling bit width.
Bit width Width
1 1
2 2
4 4
8 8

channel Appointe the number of sampling channels.
The number of
channels

Channel

1 1
4 4

12. TdsGetSampling () 7

Get the information of sampling setting of the sampler.

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 tds_samp_t* Address of the variable which houses
sampling setting information

Return value int When it succeeds, 0 is returned. When

it fails, value other than 0 is returned

Concerning the definition of tds _samp_ t, referring to 11

7 MODEL 9270, 7680B does not support

H-48928

 28

13. TdsSetSampling2()

Do sampling setting
Argument 1 tdsdev _ t * The return value of TdsOpen() of 1

should be appointed
Argument 2 int * Address of the variable which houses

sampling frequency specification
Argument 3 int * Address of the variable which houses

filter frequency specification
Argument 4 int * Address of the variable which houses

bit number specification
Argument 5 int * Address of the variable which houses

channel several specification.
Return value int When it succeeds, 0 is returned. When

it fails, value other than 0 is returned

14. TdsGetSampling2 ()

Get the information of sampling setting of the sampler.
Argument 1 tdsdev _ t * The return value of TdsOpen() of 1

should be appointed
Argument 2 int * Address of the variable which

sampling frequency specification should
be set

Argument 3 int * Address of the variable which filter
frequency specification should be set

Argument 4 int * Address of the variable which bit
number specification should be set

Argument 5 int * Address of the variable which channel
several specification should be set

Return value int When it succeeds, 0 is returned. When
it fails, value other than 0 is returned

15. TdsSetDcoffset ()

Set the information of DC offset value to the sampler.

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 int *

Address of the variable that keeps
the number of the channel that
should set DC offset value should be
appointed

Argument 3 unsigned int *
Address of the variable which keeps the
DC offset value

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

H-48928

 29

16. TdsGetDcoffset ()

Get the information of DC offset value from the sampler.

Argument 1 tdsdev_ t * The return value of TdsOpen() of 1
should be appointed

Argument 2 int *

Address of the variable that keeps
the number of the channel of the
DC-offset value which you get
should be appointed.

Argument 3 unsigned int * Address of the variable which houses
DC offset value should be appointed.

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

17. TdsStatus ()

Get the status information that the sampler keeps.
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Argument 2 unsigned int * Address of the variable that should

house status information should be
appointed. The status information
obtained is register value itself of the
sampler.

Return value int When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

18. TdsStart ()

Start the sampling

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

19. TdsStop ()

Stop the sampling

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

H-48928

 30

20. TdsGetData ()

Read double word (4 bytes) data from the sampler.
Argument 1 tdsdev_t * The return value of TdsOpen() of 1

should be appointed
Argument 2 unsigned int * Address of the variable which should

house the data should be appointed.
Return value int When it succeeds, 0 is returned.

When it fails, value other than 0 is
returned

21. TdsRead ()

Read the appointed number of data from the sampler.

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 int *

Address of the variable that keeps
the number of bytes of data that it
should read. The number of bytes of
data that is really read will be set
in this address.

Argument 3 unsigned char
*

The first address of the area (Array
and etc.) where it should house the
data should be appointed.

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

22. TdsSetAux ()

Set the AUX data that will be added to the header of the sampling data.

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 int * Address of the variable that keeps
the number of bytes of AUX data.

Argument 3 char *
The first address of the area
(Array and etc.) where the AUX
data should be set.

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

H-48928

 31

23. TdsSetAuxFile ()

The AUX data that is read from the file is appointed to be set and it sets as the

AUX data that is added to the header of the sampling data.

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 char *

The first address of the area
(Array and etc.). where the path of
the file that it reads as the AUX
data is kept.

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

24. TdsGetAux ()

Get the AUX data that is added to the header of the sampling data.

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 Int * Address of the variable that houses
the number of bytes of AUX data

Argument 3 char *
The first address of the area
(Array and etc.) where the AUX
data has been set

Return value int
When it succeeds, 0 is returned.
When it fails, value other than 0 is
returned

25. TdsGetAuxFile ()

Write Aux data to the appointed file.

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 char *

The first address of the area (Array
and etc.).where the path of the file
(which the AUX data should be
written) is kept.

Return value int When it succeeds, 0 is returned. When
it fails, value other than 0 is returned

H-48928

 32

26. TdsError ()

Get the error information

Argument 1 tdsdev_t * The return value of TdsOpen() of 1
should be appointed

Argument 2 int *
Address of the variable that should
house the information of the error
that you get.

Argument 3 char * Address of the variable that should
house the message of the error

Return value int

When it succeeds, 0 is returned. When
it fails, value other than 0 is returned

27. TdsGetVersion ()

Get the version information value of the driver and the library.

Argument 1 tdsdev _ t * The return value of TdsOpen() of 1
should be appointed

Argument 2 int *
Address of the variable that should
house the version information of the
driver

Argument 3 int *
Address of the variable that should
house the version information of the
library.

Return value int

When it succeeds, 0 is returned. When
it fails, value other than 0 is returned

Version information consists of three values, the major, the minor and the

revision number. To get the respective number, use the following macro.
TDS_VERSION_MAJOR () The macro which gets the major

number
TDS_VERSION MINOR () The macro which gets the minor

number
TDS_VERSION_REVISION () The macro which gets the revision

number

8. 3

Sample program for using library functions

Please refer to libcall.c as a sample program below vlbi-usb-linux-1.18 /example.

