GPS信号を使った 高精度電離層補正

関戸衛、近藤哲朗、 川合栄治、今江理人

意義·目的

VLBI観測の電離層遅延が高精度に補正で きると…

- パルサーVLBI観測の高精度化
- 小型VLBI局の測地高精度化
 - 岐阜大学3mアンテナ・ギガビットVLBI
- 測地VLBI受信機系の簡略化・安価
- 16chの有効活用:X帯の広帯域・高SNR化

TECMETERを使った観測

電離層電子分布のモデル化

IGS Stations Processed at CODE

GIM/CODEを使った場合 KSP-VLBIとの電離層電子数比較 2000年4月7日のデータ

VLBIとGPSの電離層遅延 比較結果のまとめ

TECMETER(CaseII)で相関係数 $\rho = 0.8$ 、RMS=1.2TECU(=25ps@8GHz) GIM/CODEの場合で相関係数 $\rho = 0.9$, RMS=0.76 TECU(=<u>16ps@8GHz</u>) $\sigma_{RMS}^2 = \sigma_{VLBI}^2 + \sigma_{GPS}^2$ と考えると $\sigma_{VLBI}=0.4$ TECU であるから $\sigma_{TECMETER}=1.1$ TECU、 $\sigma_{GIM/CODE}=0.6$ TECU となる。

Date		4/7-8	4/9-10	4/11-12	4/13-14	4/15-16	4/17-18	Average
Case I TECMETER (局毎の Map)	RMS (TECU)	5.6	5.6	7.4	5.0	8.2	9.7	6.92
	Correlation	0.39	0.0	0.12	0.36	0.15	0.0	0.17
	offset	5.0	-3.6	-1.5	2.0	-0.66	19.8	3.51
	比例係数	1.35	-0.2	0.56	1.1	0.88	-0.1	0.60
Case II TECMETER (単一の Map)	RMS (TECU)	1.2	1.2	1.3	1.2	1.3	1.0	1.20
	Correlation	0.79	0.75	0.78	0.80	0.76	0.84	0.79
	offset	2.32	2.59	2.90	2.00	2.38	2.93	2.52
	比例係数	0.88	0.87	0.98	0.86	1.08	1.01	0.95
Case III GIM/CODE	RMS (TECU)	0.70	0.89	0.75	0.73	0.82	0.69	0.76
	Correlation	0.92	0.88	0.91	0.92	1.00	0.92	0.93
	offset	2.3	2.9	2.32	2.40	2.68	2.48	2.51
	比例係数	0.83	1.07	1.01	0.95	1.11	1.02	1.00

まとめ・結論

- ✓2周波VLBIとGPSによる電離層遅延の結 果を比較した
 - TECMETER 相関係数 $\rho = 0.8$ 、 $\sigma = 1.1$ TECU
 - GIM/CODE 一 相関係数 $\rho = 0.9$, $\sigma = 0.6$ TECU
- ✓単周波VLBIでも、GIM/CODEなどの電 離層データを使うことにより2周波VLBI と同程度の補正が可能である。