4.2.4 タイミング系

雨谷 純*1 国森 裕生*1
(1995年10月16日受理)

4.2.4 TIMING MEASUREMENT SYSTEM

By

Jun AMAGAI, and Hiroo KUNIMORI

The timing system is one of the most important hardware components for the KSP SLR. The timing system measures event timings, such as laser firing timing or detection timing of return pulses. Principles of timing measurement and some additional functions of the timing systems are described.

【キーワード】SLR, 漬地, タイミング計測。
SLR, Geodesy, Timing measurement.

1. はじめに

衛星レーザ測距（Satellite Laser Ranging : SLR）は、逆反射鏡（Corner Cube Reflector : CCR）を持つ衛星に対しレーザ光を発射し、反射してきた微弱な光を望遠鏡で受信し、その往復経過時間を測定する装置である。往復経過時間から衛星までの距離が計算され、それをもとにSLR観測局の3次元位置や衛星の軌道を推定する。

タイミング系は、電気信号に変換した送出レーザ光と受信光の時間間隔を精密に測定する装置で、望遠鏡、光学系とならんでSLRの最も重要なハードウェアである。

タイミング系の構成を第1図に示す。レーザパルスは、レーザから発射された直後に、その光の一部がフォトダイオードに導かれて、スタートパルスとなる電気信号（T 1イベント）が生成される。また、衛星で反射され戻ってきた微弱光は、MCPまたはSPADといった高感度受光装置（4.2.3参照）によりストップパルスとなる電気信号（T 2イベント）に変換される。

スタートパルス、ストップパルスはともに、タイミング計測装置に導かれ、各パルスを検出した時刻が決定される。この時刻の差をとることにより往復時間を求める。得られたデータはファイルサーバに出力される。

タイミング測定の基準としては水素メザ原子標準からの信号が使用される。

2. タイミング計測

タイミングの計測はMRCS（Master Ranging Control System）と呼ばれる装置で行われる。MRCSは計算機からの指令により、レーザの発射制御、各イベントタイミングの計測の他、アイセーフレーザレーダによる航空機監視の制御も行う。

MRCSが行う制御や計測は、イベントトラックと呼ばれるメモリーに予め計算機からセットされたイベント内容とその実行予定時刻をもとに実行される。内部ロックの時刻とイベントトラックに格納された実行予定時刻に比較し、一致した時刻（PEQ）にそのイベントが実行される。

(1) 内部ロック

内部ロックには、水素メザ原子標準からの高安定な10 MHz信号を、PCCO（programmable controlled crystal oscillator）を使って通電した80 MHzの信号が使用され、68ビットのカウンタにより時刻が管理される。

(2) ダブルスポートの方法

MRCSのタイミング計測装置は、内部ロックによりまず12.5 nsの分解能でイベントタイミングの測定を行う、12.5 ns以下については、コンデンサの充電時間を利用した14ビットのバーニアカウンタ（dual-slope

*1 標準計測部 時空計測研究室
タイミング計測装置 MRCS

データ

GPS時計（VLBI用）

GPS時計（SLR用）

受信光学系

フォトダイオード

高感度受光装置

レーザ

電気信号

スタートパルス

ストップパルス

制御計算機

データ

GPS時計（SLR用）

水素メーザ

GPS時計（VLBI用）

時刻信号 (IRIG)

第1図 タイミング系の構成

timing vernier：第2図）により分解能約2 psで計測される。タイミング測定の精度はこのバーニアカウンタの精度で決まる。バーニアカウンタの校正を行うため、内部クロックから作られる擬似スタート、ストップパルスが使用され、コンデンサの充電電圧を変換するADコンバータの特性が測定される（第3図）。

測るべきイベントタイミングは、スタートパルス（T 1イベント）と、望遠鏡基準点（後述）および衛星からの2種類のストップパルス（T 2イベント）の計3つである。MRCSには全部で4つのバーニアカウンタが装備されているが、バーニアの器差を打ち消すため、2種類のストップパルスは同一のバーニアを用いて測定される（6構成の項を参照）。また、ストップパルスに関しては、PEQを元にストップパルスの入力ゲート（キャリプレーションウィンドウおよびレンジゲート）が開かれイベントが検知される。キャリプレーションウィンドウの幅は25 nsから3.2 μsまで、レンジゲートの時間幅は25 nsから819.2 μsまで、それぞれ設定できるようにになっている。

(3) 検出器ゲート

高感度受光装置から、衛星からの反射光による信号以外に、背景光等による雑音信号も含まれる。これをさけるため反射光の戻ってくる時刻を予想して高感度受光装置を動作させる（検出器ゲートを開く）。検出器ゲートの時間幅は25 nsから819.2 μsまで設定できるように設計されている。高感度受光装置はゲートを開いてから
実際に信号を検出できるようになるまで数マイクロ秒ほど時間を要するので、カウントレージョンウィンドウおよびレンジゲートは、検出器ゲートを閉じた後、この時間分遅らせてから開かれる。

(4) 2色測距レーザーへの対応

KSP・SLRのタイミング系は、2色レーザー測距に対応している。2色レーザー測距は、主波長（532μm）のレーザーと、より短い波長のレーザーを同時に使用する測距方法で、光の屈折率の分散性から伝播速度の速度を推定することができる。この方式を実用化することにより、これまでSLRの観測精度向上の大きな障害となってきた大気の伝播遜延変動による誤差が、大幅に低減されることが期待される。この2色レーザー観測を実現するため、MRCPSは複数のスタートパルス、ストップパルスに対応できるように設計されている。

取得された測距データ（各イベントタイミング）はオーブンデータに対応され、デュアルポートRAMを用いることによりデータ取得を妨げることなく、計算機によりデータ取得ができるようになっている。測距データの他、測距や制御の状況をデータとして出力される、コマンドデータを蓄積するデータパッファは、毎秒1000回のレーザ発射レートで200 ms分のデータが格納できる容量が用意されている。

(5) 航空機監視レーザーの制御

KSPでは、15°以下の仰角に対してはレーザ光が照射されないようになっている。また、地上の基準点に対してレーザ光を発射する場合は、ジスの安全基準を満たす、微弱なレーザ光を照射するようになっている。しかし、天空に対しては尖塔出力制限が言われるレベルの強力なレーザを発射するため、航空機搭乗員の目に照射された場合、光が往復する時間

T1: スタートパルスの検出時刻
T2: ステップパルスの検出時刻

第4図 内面遅延の補正

合、傷害を与える可能性がある。そのため、アイセーフレーザ（波長約1.5μm）による航空機の監視を行う、アイセーフレーザによる航空機監視は、SLRレーザーパルスの発射前に必ず行われる。アイセーフレーザを発射して300μs（45 kmに相当）以内に反射光を確認した場合

衛星と望遠鏡基準点間を
光が往復する時間

第3図 バーニーカウンタの校正

この他、KSPでは、望遠鏡基準点の位置関係が正確
に測られている地上基準点が各観測局に5点ずつ設置されており、この基準点に置いたコーナキューブに対してレーザ測距を行うことにより、望遠鏡基準点と地上基準点の相対位置関係および、局内遅延が最小自乗法により推定できるように設計されている（4.2.7参照）。

3. おわりに

KSP・SLRの中でももっとも重要なハードウェアのひとつであるタイミング系に関し、中心となるMRCSの原理と機能、構成を述べた。

平成5年度から始まったKSP観測プロジェクトも、平成7年度にVLBI館山局およびSLR4局が整備されることにより、システムの完成を見ることとなった。水

平方向の測位精度の高いVLBIに加え、鉛直方向の測位精度の高いSLRによる観測を行うことにより、高い地殻変動観測能力が得られることが期待される。

謝辞

本研究をご支援くださいました、総務部、標準計測部の関係者各位に深く感謝いたします。

参考文献