High Speed Data Transmission and Processing Systems for e-VLBI Observations

Yasuhiro Koyama, Tetsuro Kondo, Junichi Nakajima
Kashima Space Research Center
Communications Research Laboratory
Outline

- What is e-VLBI?
- How?
 - K5 VLBI System
 - Network
- Test Experiments
 - Jan.31-Feb.1, 2003 KASHIMA-KOGANEI
 - Mar.25, 2003 KASHIMA-WESTFORD
- Future Plan
The Very-Long Baseline Interferometry (VLBI) Technique
(with traditional data recording)

The Global VLBI Array
(up to ~20 stations can be used simultaneously)
VLBI Science

ASTRONOMY
- Highest resolution technique available to astronomers – tens of microarcseconds
- Allows detailed studies of the most distant objects

GEOODESY
- Highest precision (few mm) technique available for global tectonic measurements
- Highest spatial and time resolution of Earth’s motion in space for the study of Earth’s interior
 - Earth-rotation measurements important for military/civilian navigation
 - Fundamental calibration for GPS constellation within Celestial Ref Frame
Why e-VLBI?

To improve timeliness of global VLBI data processing

R1 & R4 Time Delay Over Time
September 11, 2002 - CCT

Delay in days
Why e-VLBI?

- Currently it takes at least 2 weeks to process (mainly shipping time)

- If it become 2 hours, it will improve accuracy of
 - positioning
 - navigation
 - real-time orbit determination of satellites and spacecrafts

- It potentially expands correlation/observation capacity
 - Currently ~8 stations with hardware correlator
 - Easy scalability with PC/distributed software correlator
 - No Recording Speed Limit with real-time correlation
e-VLBI with Satellite Link

- For Geodesy/Astronomy
 - e-VLBI with remote/isolated sites
 - distributed correlation processing

- For Network Research
 - ideal high volume data set for network research
 - research for adaptive transmission protocol
 - low QoS requirements
 - data loss
 - large/variable transmission delay
Typical bit-rate statistics on network

Usage >20Mbps less than 1% of the time

Conclusion: Average network usage is only a few % of capacity
VLBI Systems for e-VLBI

K3 System
- 1983~
 - Longitudinal Recorder
 - Open Reel Tapes
 - Hardware Correlator

K4 (KSP) System
- 1990~
 - Rotary Head Recorder
 - Cassette Tapes
 - Hardware Correlator
 - e-VLBI with ATM

K5 System
- 2002~
 - PC based system
 - Hard Disks
 - Software Correlator
 - e-VLBI with IP
e-VLBI with ATM Network
(1998~2001)

ATM VLBI interface (left)
and Correlator (right)

Distance between Kashima and Tateyama

100km
K5 Data Acquisition System for e-VLBI with IP

- 4 Pentium PCs
 - CPU: Pentium-4
 - 1.2GHz (1st Unit)
 - 2.4GHz (2nd Unit)
 - OS: FreeBSD (Linux is also possible)
 - An IP-VLBI board (PCI) in each PC
 - 120Gbyte HDx4x4 ~ 2.8days@64Mbps

- 16ch base-band signal amplifier

- Standard Signal Distributor
 - 10MHz and 1PPS signals for 4 units
PCI Data Sampling Board (IP-VLBI Board)

Left : Main board
Right : Auxiliary board
Specifications of the board

<table>
<thead>
<tr>
<th>Reference signals</th>
<th>10MHz +10dBm, 1PPS</th>
</tr>
</thead>
<tbody>
<tr>
<td># of INPUT CH</td>
<td>1 - 4ch</td>
</tr>
<tr>
<td>A/D</td>
<td>1, 2, 4, 8 bits</td>
</tr>
<tr>
<td>Sampling Freq.</td>
<td>40kHz, 100kHz, 200kHz, 500kHz, 1MHz, 2MHz, 4MHz, 8MHz, 16MHz</td>
</tr>
</tbody>
</table>
Test Experiments 1

- Jan. 31-Feb. 1, 2003
 - Kashima11m(K5)-Koganei11m(K5)
 - 24 hours, 56Mbps
 - Comparison with K4
K4-K5 comparison

Offset = 176 psec
RMS = 72.7 psec
K4-K5 comparison

Delay Residual

Data Analysis Results

<table>
<thead>
<tr>
<th></th>
<th>Baseline Length</th>
<th>Delay RMS</th>
<th>Delay Rate RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K4</td>
<td>109099657.0 mm</td>
<td>76 psec</td>
<td>136 fsec/sec</td>
</tr>
<tr>
<td>K5</td>
<td>109099641.2 mm</td>
<td>33 psec</td>
<td>92 fsec/sec</td>
</tr>
</tbody>
</table>
Test Experiments 2

- Mar. 25, 2003 (evlbi4)
 - Westford (Mk5)-Kashima34m(K5), 2 hours, 56Mbps
 - Fringes were found on Mar. 27!
<table>
<thead>
<tr>
<th>Source Name</th>
<th>Duration (sec)</th>
<th>File Size (Mark5)</th>
<th>File Size (K5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4C39.25</td>
<td>90</td>
<td>1,620 Mbytes</td>
</tr>
<tr>
<td>2</td>
<td>1736+455</td>
<td>200</td>
<td>3,600</td>
</tr>
<tr>
<td>3</td>
<td>1357+769</td>
<td>90</td>
<td>1,620</td>
</tr>
<tr>
<td>4</td>
<td>0059+581</td>
<td>250</td>
<td>4,500</td>
</tr>
<tr>
<td>5</td>
<td>2234+282</td>
<td>310</td>
<td>5,580</td>
</tr>
<tr>
<td>6</td>
<td>1300+580</td>
<td>140</td>
<td>2,520</td>
</tr>
<tr>
<td>7</td>
<td>0955+476</td>
<td>90</td>
<td>1,620</td>
</tr>
<tr>
<td>8</td>
<td>2113+293</td>
<td>300</td>
<td>5,400</td>
</tr>
<tr>
<td>9</td>
<td>1739+522</td>
<td>500</td>
<td>9,000</td>
</tr>
<tr>
<td>10</td>
<td>1357+769</td>
<td>90</td>
<td>1,620</td>
</tr>
<tr>
<td>11</td>
<td>0059+581</td>
<td>270</td>
<td>4,860</td>
</tr>
<tr>
<td>12</td>
<td>2234+282</td>
<td>510</td>
<td>9,180</td>
</tr>
<tr>
<td>13</td>
<td>1044+719</td>
<td>784</td>
<td>1,4112</td>
</tr>
<tr>
<td>14</td>
<td>1128+385</td>
<td>180</td>
<td>3,240</td>
</tr>
<tr>
<td>15</td>
<td>1300+580</td>
<td>130</td>
<td>2,340</td>
</tr>
<tr>
<td>16</td>
<td>0955+476</td>
<td>90</td>
<td>1,620</td>
</tr>
<tr>
<td>17</td>
<td>2113+293</td>
<td>390</td>
<td>7,020</td>
</tr>
<tr>
<td>18</td>
<td>1739+522</td>
<td>530</td>
<td>9,540</td>
</tr>
<tr>
<td>19</td>
<td>1357+769</td>
<td>90</td>
<td>1,620</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5,034</td>
<td>90,612 Mbytes</td>
</tr>
</tbody>
</table>

File Transfer ~ 20 hours

Delay = 234 msec
Buffer Size = 64 kbytes
Speed
 = 2.2 Mbps / Connection
 = 11 Mbps (5 connections)

Correlation ~ 20 hours with 1 PC

Bandwidth Synthesis ~ 10 min.

Data Analysis ~ 1 hour

UT1-TAI
 = -32338.7280 +/- 23.90 (micro sec)
Future Plan

- Repeat ftp-VLBI with Kashima-Westford a few times
 - Speed up by expanding buffer size
 - Try 256 Mbps observations
- Develop Correlator CPU Array System in 2003
- Software developments for real-time data transfer in 2003
- Regular (weekly) Mk5-K5 e-VLBI using Tsukuba-Westford baseline in 2004

Acknowledgements

- Internet2
- SuperSINET
- Galaxy team (CRL, NTT, NAO, and ISAS)
- Haystack Observatory, MIT