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Abstract. When very long baseline interferometry (VLBI)
is applied to observation of finite distance radio source
at close distance from observer, the curvature of the the
wave front cannot be approximated as plane wave, the
current standard VLBI model (‘Consensus model’) does
not have enough accuracy in this case and an alternative
precise VLBI delay model for finite distance radio source
corresponding to the ‘Consensus model’ is required in
observation of radio source in the solar system (e.g. plan-
ets, asteroids, and spacecraft). We derived a formula of
relativistic VLBI delay model for finite distance radio
source by taking into account coordinate transformation
and based on linearized Parameterized Post Newtonian
metric. This model is valid in order of several pico sec-
onds accuracy when the radio source is at distance be-
yond 109 m.
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1 Introduction

An accurate delay model is required in VLBI data pro-
cessing and analysis, especially for precise astrometry
and geodesy. Based on plane wave approximation, VLBI
observation models including relativistic effects are dis-
cussed from 1980s to beginning of 1990s. Ultimately,
T. M. Eubanks has summarized those models and pro-
posed a ‘consensus model’(Eubanks, 1991). The ‘Con-
sensus model’ is widely used in VLBI community over
the world as a standard VLBI model (McCarthy and
Petit, 2003, chap. 11)1.

However, this standard VLBI model does not have
enough accuracy, when radio source is closer than 30
light years (e.g. planets, asteroids, and spacecraft in the

1 http://maia.usno.navy.mil/conv2000.html

solar system), or in observation of relatively closer ra-
dio source (a hundred light year away) with space VLBI
(Ground - satellite or stellite - satellite) baseline. Be-
cause curvature of the wave front cannot be ignored in
those observations, an alternative VLBI delay model is
required for finite distance radio sources.

Sovers and Jacobs (1996) discussed on curvature ef-
fect of finite distance radio source. Fukushima (1994)
introduced an useful expression of VLBI delay model
for finite distance radio source and discussed on partial
derivatives. However, an analytical formula of relativis-
tic VLBI delay model corresponding to the ‘Consensus
model’ was not on their papers. Moyer (2000) has de-
veloped formulation of radiometric observation data for
spacecraft navigation with based on light time equation
(light-time approach). Solving light time equation by nu-
merical procedure is straightforward and precise enough,
however it need iteration of computation to solve light
time equation in the analysis software. We took VLBI-
like approach rather than the light-time approach be-
cause we wish to find an alternative formula of consen-
sus model so that it can be easily implemented in cur-
rent standard a priori computation software CALC2 by
modification. In this paper, we derived an analytical for-
mula of VLBI delay model for finite distance radio source
based on approach of Hellings (1986), Shahid-Saless and
Hellings (1991), and Fukushima (1994). And our target
was order of pico seconds accuracy with ground based
baseline for the radio source in the solar system.

2 Delay in the rest frame of Solar System
Barycenter

Variables of large capital indicate quantity in the rest
frame of solar system barycenter (hereafter referred as
FCB) and small ones denote those of geocentric reference
frame (hereafter referred as FCG). Then Barycentric Co-
ordinate Time (TCB) is represented by T and Geocentric
Coordinate Time (TCG) is represented by t. Suffix 0,1,2
represent radio source and two VLBI observation sta-
tions, respectively. Position vector of ith station in the

2 http://gemini.gsfc.nasa.gov/solve/solve.shtml
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FCB is expressed by Xi. Radio signal is supposed to be
emitted at T0 from the radio source and to arrive at ith

observation station at Ti. Relative position vector and
its magnitude are denoted as follows:

Rij = Xi − Xj , Rij = |Rij |

Let us define a pseudo baseline vector B∗ and pseudo
source vector K∗ as

B∗ = X2(T2) − X1(T1) = R20(T2) − R10(T1)

K∗ =
R02(T2) + R01(T1)
R01(T1) + R02(T2)

.
(1)

Then the time interval between the arrival of the signal
at two stations is given as (Fukushima, 1994):

c(T2 − T1) = R02(T2) − R01(T1) + c∆tg
= −K∗ · B∗ + c∆tg,

(2)

where ∆tg indicates difference of delay due to gravita-
tional refraction of light between two VLBI stations.
Predicted coordinates of radio source are supposed to
be given a priori as function of time. The coordinates
of radio source X0(T0) is given from predicted orbit of
the radio source at time epoch T0. The time T0, when a
signal is departed from radio source and arrived to sta-
tion X1 at T1, is obtained by a solution of light time
equation

c(T1 − T0) = |X1(T1) − X0(T0)|
+(1 + γ)

∑
J

GMJ

c2
ln
∣∣∣∣R0J + R1J + R01

R0J + R1J − R01

∣∣∣∣
(3)

Let baseline vector and pseudo source vector be defined
at the same epoch T1 in TCB respectively, B and K.
We think about to express the delay time of equation
(2) with B and K. Since the time interval T2 − T1 is
small (43 msec for earth diameter), contribution from
acceleration during this time interval (less than 6 micro
meter) can be eliminated and X2(T1) is expressed as

X2(T2) = V2(T2 − T1) + X2(T1). (4)

Then vector R02 and its magnitude is expressed as fol-
lows:

R02(T2) = R02(T1) − V2(T2 − T1) (5)
R02(T2) = |R02(T1) − V2(T2 − T1)|

∼= R02(T1) − R̂02 · V2(T2 − T1)

+
[V2(T2 − T1)]2 − [R̂02 ·V2(T2 − T1)]2

2R02(T1)
(6)

where, R̂ij = Rij/Rij . Square root of the equation was
approximated up to second order of V2(T2 − T1)/R02.
In ground based VLBI observation of radio source at
distance beyond 109 m, the contribution from the second
order term is less than 1.5 mm. Thus we will keep remain
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Fig. 1. Schematic diagram of pseudo source vector K. The
vector K is on the diagonal line of the parallelogram com-
posed from vector R10 and R20.

up to the first order term, and substituting this into
equation (2) becomes

c(T2− T1)
= R02(T1) − R01(T1) − R̂02 · V2(T2 − T1) + c∆tg
= −K · B− R̂02 · V2(T2 − T1) + c∆tg.

(7)

Therefore, VLBI delay for finite distance radio source
expressed in TCB is given by

T2 − T1 =
1

1 + β02
(−K · B

c
+ ∆tg) (8)

where,

β02 = R̂02 · V2

c
(9)

B = X2(T1) − X1(T1) (10)

K =
R02(T1) + R01(T1)
R01(T1) + R02(T1)

(11)

Attention have to be paid on the vector K, which
should be called as pseudo source vector because it is
neither unit vector nor constant vector differently from
the ordinary source vector. The geometrical image of this
vector is sketched in figure 1. The direction of the K vec-
tor is on the diagonal line of the parallelogram composed
from two vectors R01 and R02, thus the direction and
amplitude of the pseudo source vector depend on time
and baseline. Behavior of K vector and difference from
ordinary source vector is discussed in section 4.
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3 Transformation from Barycentric Coordinates
to Geocentric Coordinates

General relativity tells that coordinate transformation
in gravity field belongs to a group of general coordi-
nate transformations, which keep infinitesimal line el-
ement of events (ds)2 = gµνdxµdxν invariant. Here we
use a metric tensor gµν of post-Galilean (linearized post-
Newtonian) approximation by a following approach of
Hellings(1986)

g00 = 1 − 2φ + O(c−4)
g0k = O(c−3)
gmn = −δmn(1 + 2γφ) + O(c−4),

(12)

where φ =
∑

p
GMp

|X−Xp|c2 is summation of gravitational
potential at X produced by pth body. γ is one of Pa-
rameterized Post Newtonian parameters, and is unity in
general relativity. An approximation up to the second
order of c−1 is enough for our target accuracy.

Infinitesimal coordinate transformation between FCB
(T,X) and a FCG coordinates nearby earth (t,x) is
given by Hellings (1986) as

dt = (1 − U +
V 2

e

2c2
)dT − (1 + γU +

V 2
e

2c2
)
Ve · dX

c2

dx = (1 + γU)(dX +
dX · Ve

2c2
Ve) − (1 − U +

V 2
e

2c2
)VedT.

(13)

And its inverse transformation is

dT = (1 + U +
V 2

e

2c2
)dt + (1 − γU +

V 2
e

2c2
)
Ve · dx

c2

dX = (1 − γU)(dx +
dx · Ve

2c2
Ve) + (1 + U +

V 2
e

2c2
)Vedt.

(14)

Baseline vector of equation (10) is defined in simul-
taneity in TCB (dT = 0), however, this is not simul-
taneous in TCG. Corresponding events are (T1,X1) ⇔
(t1,x1) and (T1,X2) ⇔ (t∗1,x2). Time difference t∗1 − t1
is derived from the first equation of (13) by substitut-
ing dX = X2(T1) − X1(T1) = B and a condition dT =
0. In addition, difference between B and b is order of
B · (Ve/c)2, so taking up to second order of Ve/c gives

t∗1 − t1 = −(1 + γU +
V 2

e

2c2
)
Ve ·B

c2

∼= −Ve · b
c2

(15)

In integration of the second equation of (14) from
(T1,X1) to (T1,X2), dx at right hand side of equation is
substituted by x2(t∗1)− x1(t1) ∼= b + w2(t∗1 − t1), where
w2 is velocity vector of station 2 defined in the FCG.
Thus by using these and the relation (15), baseline vector
defined by equation (10) is expressed as follows at the

order of (Ve/c)2 :

B = X2(T1) − X1(T1)

= (1 − γU)(b− Ve · b
c2

w2)

+(1 − γU)
[b − Ve·b

c2 w2] ·Ve

2c2
Ve

−(1 + U +
V 2

e

2c2
)
Ve · b

c2
Ve

∼= (1 − γU)b− Ve · b
c2

(
Ve

2
+ w2) (16)

The relation of the time interval T2 − T1 and t2 − t1
is derived form the first equation of (14) as follows :

T2 − T1 = (1 + U +
V 2

e

2c2
)(t2 − t1)

+(1 − γU +
V 2

e

2c2
)
Ve · [x2(t2) − x1(t1)]

c2

= (1 + U +
V 2

e

2c2
+

Ve ·w2

c2
)(t2 − t1)

+(1 − γU +
V 2

e

2c2
)
Ve · b

c2
, (17)

where, a relation x2(t2) = x2(t1)+w2(t2− t1) was used.
Substituting the expression of the baseline vector (equa-

tion (16)) and the relation of the time interval (equation
(17)) to equation (8), we get the relation of the time
interval t2 − t1 and baseline vector b as

(t2 − t1) = (1 + β02)−1{
∆tg − K · b

c

[
1 − (1 + γ)U − V 2

e + 2Ve · w2

2c2

]
−Ve · b

c2

(
1 + β02 − K · (Ve + 2w2)

2c

)}
(18)

This formula relate quantity t and x, which are quan-
tities in geocentric reference frame. Time interval of sig-
nal arrival at VLBI stations is, however, based on time
scale of terrestrial time (TT), which is defined as ide-
alized atomic time scale on the geoid (Seidelmann and
Fukushima, 1992). The clock rate of TT is slightly dif-
ferent from TCG, and they are related with TT = (1 −
LG)TCG, where LG = 6.969290134 × 10−10 (McCarthy
and Petit, 2003, chap. 1). By using time scale conversion
from TCG (t) to TT (τ): τ = (1−LG)t and correspond-
ing spatial scale conversion: ξ = (1−LG)x to keep speed
of light constant, VLBI delay measured by a clock on the
geoid is found to be

τ2 − τ1 = (1 + β02)−1{
∆tg − K · b

c

[
1 − (1 + γ)U − V 2

e + 2Ve · w2

2c2

]
−Ve · b

c2

(
1 + β02 − K · (Ve + 2w2)

2c

)}
,

(19)
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where baseline vector on the geoid b = ξ2(τ1) − ξ1(τ2)
was re-defined. Used variables are

β02 = R̂02 · V2

c

R̂02 =
R02

R02

K =
R02(T1) + R01(T1)
R02(T1) + R01(T1)

.

and gravitational delay ∆tg is expressed

∆tg =
∑

J

GMJ

c3
ln

(
R2J − R̂02 · R2J

R0J − R̂02 · R0J

· R0J − R̂01 · R0J

R1J − R̂01 · R1J

)
(20)

where, G is Newtonian gravitational constant, MJ is
mass of the gravitation source J and Rij = Xi − Xj ,
Rij = |Rij |, and R̂ij = Rij/Rij . Each position epoch of
gravitating body must be chosen when distance becomes
minimum between the body and the photon (radio wave)
to be measured (Sovers and Jacobs, 1996).

4 Comparison with the ‘Consensus Model’

The ‘Consensus Model’ (Eubanks, 1991) is given as

τ2 − τ1 =
[
1 +

Ks · (Ve + w2)
c

]−1

{
∆tg − Ks · b

c

[
1 − (1 + γ)U − V 2

e + 2Ve · w2

2c2

]
−Ve · b

c2

(
1 +

Ve ·Ks

2c

)}
,

(21)

where Ks is unit source vector defined in rest frame of
solar system barycenter.

The finite VLBI delay model (equation (19)) and the
consensus model is quite similar in the form. The dif-
ference from normal VLBI delay model is, however, sig-
nificant as displayed in Figure 2. The figure shows the
difference of delay and rate between finite VLBI model
and consensus model when spacecraft NOZOMI3 is ob-
served with Kashima-Algonquin baseline, as an example.
It is remarkable that delay rate of finite VLBI model
deviates in the order of 10−9(sec/sec) from the normal
VLBI model, and it makes difficult to detect fringes of
the interferometer without appropriate correction.

The unique characteristic of the delay of the finite
VLBI delay model is mainly originated from the proper-
ties of pseudo source vector K. Differently from ordinary
source vector Ks, the pseudo source vector K changes
its direction and magnitude with time and baseline. Ex-
amples of behavior of K vector is displayed in Figure 3
in comparison with geocentric unit vector to the source
K0 ≡ R0g/R0g. The upper panel shows that the devia-

3 Spacecraft NOZOMI was launched for Mars exploration
by Institute of Space and Astronautical Sciences of Japan.
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Fig. 2. An example of difference of delay and delay rate
between finite VLBI delay model and normal VLBI delay
model when spacecraft NOZOMI is observed with Kashima-
Algonquin (9000 km) baseline. Consensus delay and rate
model, where geocentric unit vector to the radio source was
used as source vector, were subtracted from finite VLBI
model. Solid line indicates delay scaled with left vertical axis.
Dashed line is delay rate scaled with right vertical axis. Geo-
centric distance to the NOZOMI was 4.×109 m at this time.

tion of direction of the K vector from the geocentric vec-
tor K0 becomes more significant as baseline is shorter.
Since the spacecraft is moving, the track of the vectors
are not closed curves in 24 hours. The lower pannel indi-
cates that magnitude of the vector K differs from unity
greatly as baseline becomes longer.

As it is obvious from the definition, that the pseudo
source vector K (equation (11)) and the unit vector R̂02

converge to the ordinary source vector Ks as distance to
the radio source increases.

lim
R01,R02→∞

K(R01, R02) = Ks (22)

lim
R02→∞

R̂02 = Ks (23)

By using V2
∼= Ve + w2 and equation (23), we can find

lim
R02→∞

β02 = Ks · V2

c
∼= Ks · Ve + w2

c
. (24)

Then the last term of equation (19) approach to that of
equation (21) at the limit of infinite distance (Ri0 → ∞).
Therefore it can be said that the finite distance VLBI
model include the ‘consensus model’ as a special case
that the distance to the radio source is infinity. This fi-
nite VLBI model has an accuracy of several pico seconds
when a radio source at beyond 109 m away from observer
is observed with ground-based baselines.

Solving light time equation (3) for two legs of signal
propagation paths as described by Moyer (2000) (light-
time approach) is another straight forward way to give
accurate delay and delay rate of interferometer observa-
tion of finite distance radio source. And it is superior
especially at shorter radio source distance. On the other
hand, the formula of VLBI delay for finite distance ra-
dio source, which we introduced in this paper (VLBI-
like approach), has higher affinities with ordinally VLBI
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Fig. 3. Behavior of pseudo source vector K in comparison
with geocentric unit source vector K0. Upper panel shows
changes of the direction of K vector during 24 hours. The
origin of the plot is the direction of K0 vector. Lower panel
shows deviation of the magnitude of K vector from unity.
Three lines on both two panels represent Kashima-Algonquin
(9109 km), Kashima-Tomakomai (750 km), and Kashima-
Usuda (208 km) baselines. Predicted orbit of NOZOMI on
4th-5th June 2003 was used for computation of the vectors
here. Geocentric distance to the NOZOMI was 4.× 109 m in
this period.

model and VLBI analysis software. Then it is more eas-
ier for implementation into VLBI analysis packages cur-
rently used. And inherently, our VLBI-like approach is
more suitable for distant radio source (beyond 109 m ),
because larger part of light time solutions for two legs
cancel out as the distance increase in case of light-time
approach.

5 Summary

An analytical formula for a relativistic VLBI delay model
of finite distance radio source is derived based on lin-
earized post Newtonian metric. This formula has preci-
sion of less than five pico seconds for the radio source
beyond 109 m from observer.
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