● ■ 国際測地VLBI

NICT鹿島宇宙通信研究センター 小山泰弘

ORGANIZATION OF INTERNATIONAL VLBI SERVICE

Contributions from Japan

- Participating Organizations from Japan
 - GSI
 - NAO
 - NICT
 - NIPR
- Network Stations in Japan
 - Kashima (34m, 11m)
 - Koganei (11m)
 - Mizusawa (10m)
 - Syowa (10m)
 - Tsukuba (32m)

2004 Observing Plan Summary

Session purpose	Session code	Total sessions	Average # participating stations	Total station days	Average GB recorded per station	Mb/s for transfer in 1 day	Total TB per year
Rapid turnaround EOP (Monday)	IVS-R1	52	6.8	356	1200	111	427
TRF, all stations 3-4 times per year	IVS-T2	12	7.8	94	400	37	38
EOP, TRF using S2	IVS-E3	12	5.3	64	600	56	38
Rapid turnaround EOP (Thursday)	IVS-R4	52	6.9	357	500	46	179
CRF, emphasis on south	IVS-CRF	13	2.7	35	400	37	14
20-station EOP/TRF/CRF sessions	RDV	6	20.0	120	1000	93	120
R&D Gigabit/s investigations	IVS-R&D	10	6.1	61	3000	278	183
Regional - Antarctica	IVS-OHIG	6	6.0	36	300	28	11
Regional - Europe	EURO	4	8.8	35	300	28	11
Regional - Antarctica	SYOWA	4	3.0	12	300	28	4
Regional - Asia/Pacific	APSG	2	6.0	12	300	28	4
	Totals	173		1182			1027

Mark 5 + K5 Usage Plan

• IVS Working Groups

- IVS Working Group 1 (Feb.2000~Sep.2000)
 - GPS Phase Center Mapping
 - Examined feasibility to measure Phase Center of GPS Satellites with VLBI
- IVS Working Group 2 (Feb.2001~Feb.2002)
 - Product Specification and Observing Programs
 - Defined IVS's Purposes and Ovserving Strategies
- IVS Working Group 3 (Sep.2003~)
 - VLBI2010
 - Consider VLBI system in 2010 and beyond

WG2 on Product Specification andObserving Programs

i	Products		Status	Goals(2002-2005)
0	polar motion	accuracy latency resolution freq. of sessions	x _p ~100 μs, y _p ~200 μs 1-4 weeks 4 months 1 day ~3 d/week	x _p , y _p : 50 25 μs 4 - 3 days1day 1 day1h 10min 7d/week
0	UT1	accuracy latency resolution	5 20 μs 1 week 1 day	3 2 μs 4 - 3 days 1day 1 day 10min
0	Δε, Δψ	accuracy latency resolution freq. of sessions	100 400 μarcsec 1-4 weeks 4 months 1 day ~3 d/week	5025 μarcsec 4 - 3days 1 day 1 day 7 d/week
0	TRF (x,x,z)	accuracy 	5-20 mm	5 2 mm
0	CRF	accuracy	0.25-3 mas	0.25 mas (improved distribution)
		freq. of solution latency	1 y 3-6 months	1 y 3 1 month(s)
0				

• • After WG2 Report

- IVS Observing Program Committee established in Sept.
 2001
 - Members: OPC members: W. Himwich, K. Kingham, A. Searle, C. Ma, A. Niell, A. Nothnagel, K. Takashima, Y. Koyama, C. Thomas, N. Vandenberg
 - Discuss observing programs and review proposals
- Observing program 2002: geodetic VLBI observations increased by about 30% from 2001
- Goal: future increase by ~100% till 2005

VLBI2010: Motivations and Aims

o Motivations :

- Many aged VLBI stations
- RFI, especially in S-band
- Un-even distribution of VLBI stations
- High operational costs
- Long processing time

o Aims at :

- Better geodetic and astrometric data
- Low cost construction and operation
- Fast turn-around of results

• • VLBI2010 : Discussion Items

- Modernization of VLBI data-acquisition systems for higher stability and reliability, wider bandwidth, lower cost
- Small, low-cost, fast-moving antennas
- New observing strategies
- Optimum and practical observing frequencies
- Fully automated observations; remote monitoring
- Transmission of data via high-speed network (e-VLBI)
- Possible correlator upgrades
- Fast turnaround of results by full pipelining of data from antennas to correlator to final analysis

VLBI2010 : Schedule

- Establishment : Sep. 28, 2003 (IVS Directing Board Meeting)
- Discussions : Feb., 2004 (IVS General Meeting)
- 1st. Draft : April, 2004
- Discussions : October 5, 2004 (e-VLBI Workshop)
- Final Report : Fall, 2004 (?)

• VLBI2010 : Members

Brian Corey – antennas, RF/IF systems, calibration

Hayo Hase – antenna systems

Ed Himwich – control, data management

Hans Hinteregger – digital backend systems, correlators

Tetsuro Kondo – data systems, data transport, real-time

Yasuhiro Koyama – data systems, data transport

Chopo Ma – post-correlation analysis; data management

Zinovy Malkin – post-correlation analysis

Arthur Niell – atmospheric calibration, analysis

Bill Petrachenko – antenna arrays, multi-beam VLBI, frequency standards

Wolfgang Schlueter – antennas, observing strategies, frequency standards

Harald Schuh – post-correlation analysis, cross-technique use

Dave Shaffer - observing strategies, systems, analysis

Gino Tuccari – digital backend systems

Nancy Vandenberg – scheduling, observing strategies

Alan Whitney - data systems, data transport, correlators

VLBI2010 : Sub-groups

- Observing strategies (Chair : Bill Petrachenko)
- RF/IF, frequency and time (Chair : Hayo Hase)
- Backend systems (Chair : Gino Tuccari)
- Data acquisition and transport (Chair : Alan Whitney)
- Correlation and fringe-finding (Chair : Yasuhiro Koyama)
- Data analysis (Chair : Harald Schuh)
- Data archiving and management (Chair : Chopo Ma)

• Current Ideas

- Develop a few sets of global networks with 6~8 20-m class antennas surrounding the Earth.
- Small dish phased array antennas at multiple sites.
- Higher frequencies, software distributed correlation, digital BBCs, fringe rotation at sites, etc.

• • Items for Discussions

- VLBI2010
 - How to summarize?
 - How to realize?
- o Participation of VERA station(s) to the IVS sessions?
- o Participation of KVN station(s) to the IVS sessions?