

Title: An FFT library optimized for VLBI software correlators

Authors: Takeuchi Hiroshi*, Chikada Yoshihiro**, Koyama Yasuhiro*
e-mail: ht@nict.go.jp
Affiliation: *:NICT/Japan **:NAOJ/Japan

Abstract:
An FFT software library, which is optimized for FX correlators, was developed. In the
library, same-tick data from multiple different streams (different baseband channels or
different stations) are stored adjacently in the memory space and be processed
simultaneously. It guarantees an efficient sequential access to the memory in butterfly
computations of the FFT. This library was written in x86 assembly language, and SSE3
instruction set is used to accelerate its performance. To evaluate the performance of the
library, we compared its processing speed against that of FFTW3.0 which is known as
one of the fastest FFT libraries for many processors. As a result, it runs about 10-30%
faster than the FFTW. If this library is applied to the multi-channel VLBI data stream,
much more speed-up can be expected.

1. Introduction
Conventionally, digital-backend instruments in radio interferometer such as correlators
or digital spectrometers are implemented with custom-built hardware to process
high-speed video band signals in real-time. In the mean time, performance of
commodity PCs has increased so that we could use them in the digital-backend system
of VLBI. In order to boost the performance of PC-based instruments, we developed an
FFT library optimized for processing VLBI data streams.

2. Algorithm
While sequential access speed to the memory is much higher than random access speed
in recent CPUs, non-sequential accesses are inevitable in FFT algorithm especially in
the bit-reverse permutations in the last stage of FFT. To solve this problem, we
developed a new FFT library in which multiple different streams are transformed
simultaneously. Because same time-index data from different streams are stored
adjacently in the buffer area of the library, memory accesses in the most inner loops are
guaranteed to be sequential.
Here we suppose n-sets of N-point FFT input streams,
A[i,j] (i=1,…,n, j=1,…,N).
In the normal way, these data sets are transformed in a sequential order of i as follows:

For i=1 to n do
…
 B=A[i,*]
 For j=1 to N do
 …
 For k=1 to K do
 j[k]=g(j,k)
 J[k]=G(j,k)
 enddo
 (B[J[1]],…, B[J[K]])=f(B[j[1]],…, B[j[K]])
 …
 enddo
 …
enddo

Note that memory accesses in the most inner loop of the above pseudo-code are not
sequential. Though there are some ways to realize a nearly-sequential access by using
out-of-place algorithms, complete sequential access is impossible due to the FFT
data-flow topology.
Here, we propose a parallel FFT algorithm, in which same time-index data from
different streams are stored adjacently. In this scheme, A[i,j] are transposed and i-loop
and j-loop are interchanged as follows:

For j=1 to N do
 …
 For k=1 to K do
 j[k]=g(j,k)
 J[k]=G(j,k)
 enddo
 For i=1 to n do
 …
 (A[i,J[1]],…, A[i,J[K]])=f(A[i,j[1]],…, A[i,j[K]])
 …
 enddo
 …
enddo

Note that there are n-contiguous sequential memory accesses in the most inner loop of
above code. Moreover, the number of times FFT coefficients are loaded for the butterfly
operations becomes 1/n. On the other hand, required buffer space for this algorithm
becomes n-times. If the required buffer size exceeds the L2-cache size of the system, the
performance will be degraded significantly.

3. Benchmark

0

50

100

150

200

250

10 100 1000 10000 100000

FFT points

M
bp

s
FFTW

Parallel FFT

 Environment: Intel Xeon 3.40 GHz, L1 cashe:8KB,L2 cache:1024KB,Main memory

4GB,Using only 1CPU (IA32)
 Benchmark test data length: 10G samples * 5 times(error bar in the graph is based

on the standard deviations of five results)
 FFTW3.0:complex input, single-precision, compiled with GCC -O3, using SSE

functions. FFTW_EXHAUSTIVE option was used.
 Parallel FFT library: 4-streams parallel operation, complex input, single-precision,

written in assembly language (nasm), using SSE and SSE3 functions, radix-4,
Cooley-Tukey, out-of-place(dual buffer).

4. Why original FFT library? (Other advantages for software correlators)

 Fringe rotation can be included in butterfly operations in the last stage of FFT
operation. Trigonometric functions table for fringe rotation can be shared with the
FFT coefficient table.

 Conversion from input bit streams to floating-point values can be included in the
first stage of the FFT library.

 If each input stream of parallel FFT is allocated to stream from different station,
same frequency channels from multiple different stations are adjoining in memory

space after the FFT. As a result, 'X' part's operation in the FX correlator can be
performed effectively without any redundant memory accesses.

5. Application(K5/2bit data stream)

Example:K5 4ch/2bit data stream

ch1 ch2 ch3 ch4 ch1 ch2 ch3 ch4 ch1 ch2 ch3 ch4

1byte 1byte 1byte

t=0 t=1 t=2

time

ch1 ch2 ch3 ch4 ch2 ch3 ch4 ch2 ch3 ch4

t=0 t=1 t=2

time
ch1 ch1

t0 t1 t2 t3 t5 t6 t7 t9 t10t4 t8

2nd FFT
for ch2

extract ch2
2bit -> floating-point conversion

FFT
 input ch

Redundant memory access
(In recent x86-CPU,a minimum unit of data transfer between L1-
cache and L2-cache is 64-byte.)

ch1 ch2 ch3 ch4 ch2 ch3 ch4 ch2 ch3 ch4

1byte 1byte 1byte

t=0 t=1 t=2

time
ch1 ch1

t0 t1 t2 t3 t5 t6 t7 t9 t10t4 t8

FFT-input Floating-point array

1st FFT
for ch1

extract ch1
2bit -> floating-point conversion

FFT
 input ch

FFTs with exisiting library

floating-point conversion with
1byte to 4 floating-points table

float table[256][4]

ch1 ch2 ch3 ch4 ch2 ch3 ch4 ch2 ch3 ch4

1byte 1byte 1byte

t=0 t=1 t=2

time
ch1 ch1

t0
ch1

t0
ch2

t0
ch3

t0
ch4

t1
ch2

t1
ch3

t1
ch4

t2
ch2

t2
ch3

t1
ch1

t2
ch1

4-ch pararell FFT
floating-point
input array

Pararell
4-ch
FFT

FFT
 input ch

t2
ch4

Sequential memory access !

4-ch Parallel FFT method

6. Library Download
You can obtain the parallel FFT library from
http://www2.nict.go.jp/ka/radioastro/people/takeuchi/fft/index.html
If you have any questions, please feel free to contact the author (ht@nict.go.jp).

7. References
M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, Proc.
ICASSP 1998 3, p. 1381

