Real-time high volume data transfer and processing for e-VLBI

Yasuhiro Koyama, Tetsuro Kondo, Hiroshi Takeuchi, Moritaka Kimura (Kashima Space Research Center, NICT, Japan)

and

Masaki Hirabaru (New Generation Network Research Center, NICT, Japan)

Outline

- What is e-VLBI? Why e-VLBI is necessary?
- How?
 - K5 VLBI System ~ Standardization
 - Network
- Test Experiments
 - June 2004 : Near-Realtime UT1 Estimation
 - January 2005 : Realtime Processing Demo
- Future Plan

Traditional VLBI

The Very-Long Baseline Interferometry (VLBI) Technique (with traditional data recording)

The Global VLBI Array

(up to ~20 stations can be used simultaneously)

What is e-VLBI?

VLBI=Very Long Baseline Interferometry

VLBI Applications

Geophysics and Plate Tectonics

VLBI Applications (2)

- Radio Astronomy : High Resolution Imaging, Astro-dynamics
- Reference Frame : Celestial / Terrestrial Reference Frame
- Earth Orientation Parameters, Dynamics of Earth's Inner Core

Why e-VLBI?

To improve timeliness of global VLBI data processing

Why e-VLBI?

- Currently it takes 1 week or more to process (mainly shipping time)
- If it become 2 hours, it will improve accuracy of
 - positioning
 - navigation
 - real-time orbit determination of satellites and spacecrafts
- It potentially expands correlation/observation capacity
 - Currently ~8 stations with hardware correlator
 - Easy scalability with PC/distributed software correlator
 - No Recording Speed Limit with real-time correlation

VLBI - Characteristics

• Observing Bandwidth \propto Data rate \propto (Precision of Time Delay)⁻¹

 $\propto (\text{SNR})^{1/2}$

Faster Data Rate = Higher Sensitivity

- Wave Length / Baseline Length \propto Angular Resolution
- Baseline Length \propto (EOP Precision)⁻¹

Longer Distance = Better Results

History of VLBI System R&D

K3 System

Longitudinal Recorder

Hardware Correlator

Open Reel Tapes

1983~

K4 (KSP) System

1990~

Rotary Head Recorder Cassette Tapes Hardware Correlator e-VLBI with ATM 2000~ PC based system Hard Disks Software Correlator e-VLBI with IP

K5 Data Acquisition Terminal

K5 System

e-VLBI with the K5 system

- Flexible combination of component units
 - Supports variety of observation modes
 - 40ksps~2048Msps, 1bit~8bits/sample, 1ch~16ch~
 - Scalable, extensible, and sustainable system
 - Maintain and promote compatibility and connectivity by adopting various standards
 - VSI-H, VSI-S, VSI-E, file naming convention
- Being developed to realize global e-VLBI
 - near real-time VLBI : already in practice for IVS sessions ~ data transfer, parallel correlation processing
 - real-time VLBI : IP, VSI-E

Recent developments of K5 system

USB2.0 version of K5/VSSP = K5/VSSP32 - up to 64Msps sampling each channel - supports up to 1024Mbps with 16 channels - no need to have PCI extension bay VSI-S implementation to K5/VSI system - succeeded to control the unit from fs9 by developing VSI-S command interpreter program modules (N. Takahashi at Yamaguchi Univ.)

Concept of the K5 System

	K3	K4	К5
Data Recorders	Magnetic Tapes Longitudinal Recorders	Magnetic Tapes Rotary Head Recorders	Hard Disks
e-VLBI	Telephone Line	ATM	IP
Correlators	Hardware	Hardware	Software
	1983~	1990~	2002~
	M96 Recorder, K3 Formatter, K3 VC, K3 Correlator	DIR-1000, -L -M, DFC1100, DFC2100, K4 VC (Type-1, 2), TDS784, ADS1000, GBR1000, GBR2000D, K4 Correlator, KSP Correlators, GICO, GICO2	K5/VSSP, K5/VSSP32, K5/VSI, ADS1000, ADS2000, ADS3000, Software Correlatos (cor, fx_cor, GICO3)

K5 Family : Selection of Samplers (1)

	K5/VSSP	ADS1000	ADS2000
Sampling Speed	40, 100, 200, 500kHz, 1, 2, 4, 8, 16MHz,	1024MHz	64MHz
Sampling Bits	1, 2, 4, 8	1, 2	1, 2
No. Channels	1, 4, 16 (with 4PCs)	1	16
Max. Data Rate	512Mbps (with 4PCs)	2048Mbps	2048Mbps

K5 Family : Selection of Samplers (2)

	K5/VSSP32	ADS3000
Sampling Speed	40, 100, 200, 500kHz, 1, 2, 4, 8, 16, 32, 64MHz,	2048MHz
Sampling Bits	1, 2, 4, 8	8
No. Channels	1, 4, 16 (with 4PCs)	Programmable with FPGA
Max. Data Rate	1024Mbps (with 4PCs)	2048Mbps

K5 Data Acquisition System

4 Pentium PCs

- CPU : Pentium-4
 - 1.2GHz (1st Unit)
 - 2.4GHz (2nd Unit)
- OS : FreeBSD (Linux is also possible)
- An IP-VLBI board (PCI) in each PC
- 120Gbyte HDx4x4 ~ 2.8days@64Mbps
- 16ch base-band signal amplifier
- Standard Signal Distributor
 - 10MHz and 1PPS signals for 4 units

CPU array for Software Correlation

	💌 🖻 🏠 🔎 🗺	☆お気に入り 💐 メディア	10	3. 🖗	w • 📃	ه 🕅		1 1 2	I 🕲
ス® (a) http://	yuucrleo.jp/k5cor/							ど 🔁 移	動 リンク 🧙
	K	5 相関処理 a信総合研究所産島宇 communication Rese	目ス - _{歯通信研} erach La	テー 変センタ aborato	タス 				
	実験コード名								
	JD0306	28	3		3 22				
Obs	Baseline	Apri file	Mark	host	Sta	rt	S	58理中:東 98理時:青	
1	KASHIMA-GIFU11	ape197020000RYc.bd	•	byakko	yakko 031118180719		031118183127		
2	KASHIMA-GIFU11	ape197020610RYc.td		seiryuu	031118180733		031118211308		
	KASHIMA-GIFU11	ape197021950RYc.bt	•	byakko	ko 031118183128		031118113510		
3		ana1070336405Va.hd		seiryuu	031118211309				
3	KASHIMA-GIFU11	apers/022040RTC.bt			<u> </u>				
3 4 5	KASHIMA-GIFU11 KASHIMA-GIFU11	ape19702305RYc.bt	0	byakko	0311182	13511			
3 4 5 6	KASHIMA-OIFU11 KASHIMA-OIFU11 KASHIMA-OIFU11	ape19702305RYc.bt ape19702305RYc.bt	•	byakko K5la	0311182	13511			

Correlation Master Table

Master Server

VLBI@Home Client PCs

ATM based real-time VLBI system

ADS-1000 (A/D Sampler) : 1024Msps, 2bits AD

Distributed Correlator : 1024Msps, 2bits, 3baselines (developed by NAOJ)

Network Access Unit (VOA-100) : OC48 x 2 (developed by NAOJ)

UT1 Challenge with e-VLBI : June 29, 2004

Kashima 34m

- Time Sequence (JST)
 - 4:00 Observing Started
 - 5:00 Observing Finished
 - 5:13 Data Transfer Started (from Haystack to Kashima)
 - 6:28 Data Transfer Finished (~30Mbps)
 - 9:16 Correlation Processing Completed (used 20 CPUs)
 - 9:30 Data Analysis Completed : UT1-UTC sigma=22 microsec.

n : 9502km

Westford 18m

New World Record!! 4.5 hours

K5 - Mark 5 file conversion through VSI-E

K5 files (4 files)

Mark 5 file

* 'vtp' codes have been developed by David Lapsley and his colleagues at Haystack Observatory

K5 - Mark 5 real-time correlation (in progress)

Real-time software correlation demo

Real-time software distributed correlation was demonstrated at JGN2 symposium in Osaka (January 17-18, 2005). Fake random data were generated at Kashima and at Haystack and transferred to Osaka by using Abilene and JGN2.

The data were correlated by using 8 CPUs (Apple X-serve G5) and about 400Mbps throughput without fringe rotation processing was achieved (the speed was limited by the network data transfer).

Another recent event at Kashima

Emperor and Empress of Japan visited Kashima and they learned about e-VLBI (June 5, 2005)

Demonstration software was developed. The software was designed to be useful for actual operation.

Huygens Probe Tracking : January 14, 2005

- Huygens probe was tracked by global VLBI network during its descent to the atmosphere of Titan on January 14, 2005.
- Purpose was to investigate atmosphere of Titan.
- The new network connection was established between Shanghai and Kashima and was used for data transfer (average transfer rate was 22.2 Mbps).
- Participated VLBI Stations
 - China (Shanghai and Urumqi)
 - Japan (Kashima)
 - Netherlands (Westerbork)
 - USA (Green Bank and 8 VLBA stations)
 - Australia (Ceduna, Hobart, Mopra, Parkes and ATCA)

Remaining Issues

- Realize global-scale 'real-time' operation of e-VLBI
- Promote standardized data transfer protocol (VSI-E)
- Remove bottle-necks for high-speed AD sampling and real-time processing
 - Faster AD sampling
 - Faster interfacing (PCI=>PCI Express=>Optical Link)
 - Efficient data transfer over the shared networks
 - Global GRID data processing
- Expand the experiences learned with e-VLBI to other scientific applications

Acknowledgements

- Haystack Observatory for various e-VLBI activities
 - Jason SooHoo : routine administration for data transfer
 - Chester Ruszczyk, Kevin Dudevoir, Mike Titus, and Alan Whitney : developments for VSI-E data transfer of K5 system
- JIVE, Univ. Tech. Vienna, ATNF CSIRO, Istituto di Radioastronomia INAF, NRCan, KVN, Shanghai Observatory CAS, and MERLIN for valuable feedbacks to improve software correlator
- NAOJ, GSI, JAXA/ISAS, NIPR, NTT Lab., KDDI Lab., Yamaguchi Univ., Gifu Univ., Kagoshima Univ., and Hokkaido Univ. for e-VLBI collaboration in Japan
- JGN2, TransPAC2, Abilene, GEMnet2/GALAXY, SuperSINET, and APAN networks for their supports to e-VLBI