

Spacecraft Navigation R&RR + VLBI

VLBI Observable: Group Delay

DDOR signal

Effective Bandwidth 450kHz

Range signal

Telemetry Signal

0

-20

-10

Ω

Lag(usec)

20

10

Hayabusa's Touchdown Approach to ITOKAWA in Nov. 2005

VLBI of HAYABYSA in Nov. 2005 観測周波数:8.4GHz

Epoch	Reference Source (Angular Distance)	Switching Cycle	Observation Stations
4 th Nov.	1352-104(3.3deg)	6 min.	O,T,C
12 th Nov.	1430-178(3.3deg.) 1443-162(2.4deg.)	6 min. Alternatively	O,T
19 th Nov.	1443-162(5.5deg.) 1430-178(8.5deg.)	6 min. Alternatively	O,T,M
25 th Nov.	1514-241(6.8deg.) 1504-166(7.1deg.)	6 min. Alternatively	O,T

O:Kashima34, T:Tsukuba32m, C: Chichijima10m, M: Mizusawa 20m

相対 VLBI による 遅延 校正

Delta-VLBI: Data Processing Scheme

2005/11/19 Kashima34-Mizusawa20 (300km) Calib: Geo.+Atm.

2005/11/4 - Kashima34-Chichijima10 (1000km) - Calib: Geo.+Atm.

Calib: Geo.+Atm.

Delta-VLBI: 位相遅延と群遅延

$$\tau_{HYBS} = \tau_{geo} + \tau_{clock} + \tau_{atm} - \tau_{ION} + \dots$$

$$\tau_{QSO} = \tau_{geo} + \tau_{clock} + \tau_{atm} + \tau_{ION} + \dots$$

$$\tau^{o}_{QSO} - \tau^{c}_{QSO} = \tau_{clock} + \tau_{atm} + \tau_{ION} + \dots$$

$$(\tau^{o}_{HYBS} - \tau^{c}_{HYBS}) - (\tau^{o}_{QSO} - \tau^{c}_{QSO}) = \Delta \tau^{Rsd}_{HYBS} - 2\tau_{ION} + \alpha$$

クエーサの位相遅延量を併用した 相対VLBI遅延校正

Statistical Comparison on Cal. With Group and Group/Phase

- 群遅延と位相遅延がほぼ逆センス
 - Exess-delayほとんどが電離媒質による遅延
 - 電離遅延=1.5ns(=>100TECU)
 - 中性遅延=0.3ns
 - 太陽コロナNeから見積もり
 - 経路中の電子柱密度~1万TECU
 - 1degの角度差=>3.7太陽半径 =>65ns相当

電離層 < <太陽コロナの影響

結果

-)群遅延量・位相遅延量を抽出し相対VLBIの遅延補正 精度について評価した.
- | 太陽離角の小さなHAYABUSA観測において、電離媒質 (太陽コロナ)による影響が大きい

課題

- 太陽近傍を通る電波観測の場合、飛翔体も2周波観測 が必要であろう。=>将来の水星、金星探査ミッション.
 - 群遅延計測の精度向上~レプリカ信号を使った相関処 理