Do we need to consider dispersive troposphere delays for current and next generation space-geodetic instruments?

Hobiger T., P. Baron and R. Ichikawa

Applied Electromagnetic Research Institute National Institute of Information and Communications Technology, Japan

Refractivity

Current model used for micro-wave techniques in space geodesy

$$N = N_0(P, T, RH) + N'(P, T, RH, f) + i \cdot N''(P, T, RH, f)$$

Frequency dependent complex contribution which is neglected for micro-wave techniques. Real part \rightarrow delay Imaginary part \rightarrow damping

Question: Can we really neglect the dispersive part for current and upcoming space geodetic techniques ?

Liebe93 Model (dispersive terms only)	
$N(f) = N_D(f) +$	– $N_V(f)$ (Note: these are all complex functions!)
Dry-Air Module	Water Vapor Module
$N_D(f) = N_n(f) + \sum_k S_k(f)F_k(f)$	$N_V(f) = N_c(f) + \sum_l S_l(f)F_l(f)$
$N_n(f) \stackrel{\mbox{non-resonant term of the } {\rm 0_2}}{ m spectrum}$	$N_c(f)$ H ₂ O continuum spectrum
$S_k(f)\;$ line strength of the k-th 0 ₂ line	$S_l(f)$ line strength of the I-th H ₂ O line
$F_k(f)$ Van Vleck-Weisskopf function	$F_l(f)$ Van Vleck-Weisskopf function
44 oxygen lines	34 H ₂ O lines
Liebe93 model has been adopted in the ITU-R recommendation P.676-8: <u><i>"… valid for the frequency range between 1 – 1,000 GHz … "</i></u>	

Simulations:

- P and T from US standard atmosphere
- RH = 50 for H < 13 km
- RH = 0 for H > 13 km

- Space geodetic microwave techniques are not operating close to the O₂ lines
- However, there are significant slopes of the real part (delay) which need to be studied for dual-frequency techniques!

KARAT- λ

- Modified version of our ray-tracer KARAT (Hobiger et al., JGR, 2008)
- Carries out ray-tracing in long-double precision
- Computes complex refractivity values for a given frequency based on data from a numerical weather model (P, T, RH)
- Very time consuming calculations
- Requires large CPU memory (> 8 GB)
- Benefit: allows to derive signal attenuation by integrating over the imaginary part of the refractivity index → tool for radio-communication (link budget, signal fading, etc...)

Simulations

- ECMWF data (0.2 x 0.2 deg) between Aug. 1st and Aug. 7th, 2011
- Every day at 0 UT, delays in all azimuth directions and for elevation angles between 6 and 90 degree
- Space geodetic techniques considered
 - GPS-L1, GPS-L2
 - VLBI-S (2.3 GHz), VLBI-X (8.4 GHz)
 - VLBI2010-lowest band (2.5 GHz), VLBI2010-highest band (11.7 GHz)
 - VLBI-X (8.4 GHz), VLBI-Ka (32 GHz)

Results (Koganei, Japan, Aug. 1st, 2011, 0 UT)

NICT

Elevation dependency (Koganei, Aug. 1st, 2011, 0 UT)

Effect on geodetic parameter estimation

- Assume 4 unknowns position (N,E,U) + ZWD
- Utilize ray-traced dispersive troposphere total delays and form the ionosphere-free linear combination

$$\tau = \frac{f_1^2}{f_1^2 - f_2^2} \tau_1 - \frac{f_2^2}{f_1^2 - f_2^2} \tau_2$$

- Mapping function: GMF
- ZHD: Saastamoinen model, based on T and P at the station as obtained from numerical weather model
- Computing the differences w.r.t. the GPS L1/L2 position and ZWD estimates

VLBI S/X w.r.t. GPS L1/L2

VLBI2010 w.r.t. GPS L1/L2

VLBI X/Ka w.r.t. GPS L1/L2

Conclusions

- For current and upcoming space geodetic techniques dispersive troposphere delays
 - reach several mm at very low elevation angles, but are absorbed into the troposphere parameters.
 - have no significant impact on geodetic target parameters
 - bias troposphere parameters by less than 0.1 mm (except X/Ka VLBI)
 - Only VLBI in X/Ka mode should be treated with care when combining troposphere parameters in the (far) future

Thank you very much for your attention.

hobiger@nict.go.jp

Acknowledgments: The author thank J. Boehm (VUT) for providing us ECMWF data. Parts of this study were supported by a Grant-in-Aid for scientific research (KAKENHI, No. 21241043).