NICT鹿島34mのパレナー観測と 今後の計画について

NICT

関戸 衛、岳藤一宏、花土ゆう子

		鹿	島宇宙技術センタ	z <u>139° 140°</u>	141°
$34 \mathrm{MT}$	ンテナの受信	€機	IICT本部(小金井	36°	36
周波数帯	周波数[GHz] とバンド幅	Tsys(K)	SEFD(Jy)	受信円偏波	141°
L-band	1.4GHz (35MHz) 1.6GHz(100MHz)	50	200	LHCP/RHCP	
S-band	2.19GHz(160MHz)	65	370	LHCP/RHCP	
X-band	8.18GHz(900MHz)	60	300	LHCP/RHCP	
K-band	22GHz(2GHz)	140	1000	LHCP	
Ka-band	31.7GHz(2GHz)	150	1100	RHCP	
Q-band	42.3GHz(2.6GHz)	350	4200		

NICTの34Mアンテナを使ったパルサー観測

- パルサータイミング観測
 長期安定度~原子時計を長期で補完する
- ⊃ パルサーVLBI
 - ⇒ 鹿島34m-Kalyazin64m(Russia)7000km 基線
 - > 基準座標系の結合: 力学座標系(暦)とICRF(クエーサ)
 > パルサーの固有運動
- Giant Radio Pulse(GRP)観測
 X線との同時観測(寺澤さん)
 パルスの出現確率(ポアソン分布)とエネルギー頻度分布
 L-band(1.4/1.6GHz)受信機の混信対策・改善

パルサー時系と原子時計の確度・安定度

ADEV

周波数分解能: ~ 200 kHz (256ch x 4unit) 時間分解能 : ~13µ s (100サンプル/1周期) 加算パルス : Max. 2²4回 (~1600万パルス)

* 多ch化をコンパクトに → AOS(音響光学型分光器)導入
* 周波数標準、時刻基準 → 水素メーザー、GPSからのUTC
* パルス同期加算 → 変動する周期を外部から制御
* 留意点 → ノイズ除去、タイミング制御、周波数・時刻キープ

計測データ ~ パルス波形

PSR1937+21 : 周期 ~ 1.6ms 強度 ~ 3mJy (北天で最も強度強い)

観測条件 : 鹿島34mアンテナ S-band、RHCP 50MHBW・30分積分後

計測結果 ~ タイミング残差

Nov.'97~ Apr.'05(~7年半)、 毎週1日4~8時間: 30分積分後の波形

MJD

計測結果 ~ タイミング残差

Nov.'97~ Apr.'05(~7年半)、 毎週1日4~8時間: 30分積分後の波形

7パラメータフィット後、1日平均

(位置、周波数(2次まで)、固有運動、年周視差)

MJD

計測結果 ~ 周波数安定度

PSR1937+21 周波数安定度

アレシボ局の結果と 同程度の安定度が 得られてきている。 (アレシボ:300アンテナ) ↓

- * データの有効性確認
- * ノウハウの確立
- * 国内唯一の定常観測局

PSR1855+09、PSR1937+21 の 周波数安定度

天体歴・時系 を変えて 解析した結果の 比較

- 鹿島34mアンテナ
- Kalyazin64mアンテナ(Russia) 0
- K4 VLBI システム,水素メーザ 0
- K4相関器 0

- 目的 基準座標系の結合:力学座標系とICRFの結合
- 固有運動の計測→パルサーの速度分布、超新星残骸
- 年周視差の測定ー距離→電子密度分布モデルへの寄与

通信総合研究所-ロシアレベデフ物理学研究所の共同研究

日露科学技術協力協定の「ミリ秒パルサータイミング精密計測及びパルサータイムスケールに関する研究」に基づいて1995年より観測を開始。

観測に成功したPULSAR

 \circ **B0329+54** (P=715msec, D=1.4kpc, F₁₄₀₀=200mJy) 北天で電波で最も明るいPulsar \circ B0355+54 (P=156msec, D=2.1kpc, F₁₄₀₀=23mJy) • 過去の観測: Fomalont et al.(1984,1992,1997), Lyne et al.(1982) • **B0950+08** (P=253msec,D=0.12kpc, F₁₄₀₀=84mJy) • Gwinn et al. (1986)がVLBIでparallaxを測定 $(\mu_{\alpha},\mu_{\delta})=(18.7,36.2), Brisken(-1.6,29.5)$ • **B1933+16** (P=359msec,D=7.94kpc, F₁₄₀₀=42mJy) 過去の観測:Fomalont et al.(1992,1997) **B2021+51** (P=529msec,D=1.1kpc, F_{1400} =27mJy) • 過去の観測: Fomalont et al.(1984), Lyne et al.(1982), Campbell et al. (1996) がVLBIでparallaxを測定 $(\mu_{\alpha},\mu_{\delta}) = (-8.1,13.4)$

INTERSTELLAR SCINTILLATION

- o Scattering Disk Size: θ_{sc}
- Scintillation Bandwidth: B_{sc}

Time

Cross Power Spectrum

PSR0329+54 @1.4GHz $B_{sc} \sim 15 MHz$

Dynamic Spectrum

Cross Power Spectrum

Giant Radio Pulse(GRP)の観測

観測システム (L-band)

IF: 155-185MHz

34m L-BAND RF: 1405-1435MHz

K5/VSI card

Dispersion Removal

パルサーの信号は地球に達するまでに、星間媒質により 周波数に依存した遅延を受ける。

$$\Delta \tau(f) = 4.149 \times 10^3 \frac{DM}{f_{MHz}^2}$$
 [sec]
FFTにより時間領域へ変換し、 $\exp[+j\Delta \tau(f)]$ を掛けて
ディスパージョンを補正する。

freq 1.4GHz Dynamic spectrum of GRP

GRPの確率分布~ポアソン分布に従うことを確認

Interval (Pulsar Period)

				Inter var (I ansar I er	()
Epoch	Antenna	Band	GRP rate	P平均出現間隔	
			[/period]	[period]	[sec]
2010Apr06	Kas34	L-band	0.00617	162.1	5.36
2011Mar22	Usd64	L-band	0.00690	144.9	4.79
2011Mar22	Usd64	S-band	0.00110	909.1	30.07
2011Sep01	Kas34	L-band	0.01074	93.1	3.08
20110ct17	Kas34	L-band	0.00679	147.3	4.87
20110ct17	Usd64	S-band	0.00053	1886.8	62.42

かにパルサーの GRPのMAINパルスとINTERパルスのSNR分布

- 横軸SNRはエネルギーと読み替えることができる。
- 頻度分布が変化しないならば、平均時間を延ばすと分 布の形を変えずにグラフは右にシフトする。

→ヒストグラムを重ねてみると・・・

かにパルサーの GRPのMAINパルスとINTERパルスのSNR分布

- 横軸SNRはエネルギーと読み替えることができる。
- 頻度分布が変化しないならば、平均時間を延ばすと分 布の形を変えずにグラフは右にシフトする。

→ヒストグラムを重ねてみると・・・

- GRPの観測
 - 2周波(1.4/1.6GHz)によるDM測定など
- VLBI観測 ロシア64m

- 固有運動の計測

- ・ タイミング観測の再開
 - デジタルフィルタによるシステムの改良・自動化
 - Nulling On/Off mode change 似伴うdP/dtの変化など興味深い
 - IAU Division-I(Fundamental Astronomy)のComission31(Time) のWGで TTへの寄与にPulsar Timeを含めるかどうか検討す るWGの設置