AU-JP Radio Astrometry School in Kagoshima March 29, 2016

National Institute of Information and Communications Technology

Tetsuro KONDO

Contents

- What is geodetic VLBI?
- How to get residual delay and delay rate from correlation data
- Measurements of plate motion and crustal deformation
- Evolution of VLBI system
 - direct sampling
 - Wideband bandwidth synthesis, etc.
 - VGOS (VLBI Global Observing System)

Space Geodetic Techniques

• VLBI

(Very Long Baseline Interferometry)

• GNSS (Global Navigation Satellite System)

- GPS (USA), GALILEO (EU), GLONASS (Russia), BeiDou (China), QZS (Japan), IRNSS (India)

SLR(Satellite Laser Ranging)

Measure Time Delay

Measured delay is affected by

How to get residual delay and delay rate

Correlation Processing

Two types of correlators

residual delay $\Delta \tau$ and delay rate $\Delta \dot{\tau}$

How to obtain residual delay $\Delta \tau$ and delay rate $\Delta \dot{\tau}$ from cross-spectra

 $\Delta \tau$ yields phase rotation on frequency domain $\Delta \dot{\tau}$ yields phase rotation on time domain N/CT

Hill climbing method and parabola fitting

Example of actual search function

Bandwidth Synthesis (BWS)

delay resolution $\propto 1/bandwidth$

Conventional Bandwidth Synthesis

Search Function for BWS

$$F(\Delta\tau,\Delta\dot{\tau}) = \left| \int_0^B \left\{ \int_0^T \underbrace{S(f,t)}_{0} e_0^{-i2\pi f_0 \Delta \dot{\tau} t} dt \right\} e^{-i2\pi \Delta \tau f} df \right|$$

Now combined cross spectrum

Each channel phase is compensated by using the phase of PCAL signal

 f_0 : reference RF frequency

Antenna Motion during Geodetic VLBI

10sec -> 1hrs 100~300 scans/24 hours

First Target was Measurements of Plate Motion

Tectonic Plates

Baseline length change measured on Kashima–Hawaii Baseline

Continuous Measurements of Crustal Deformation Around Tokyo (KSP Project)

Keystone at Kashima Jingu Shrine

Keystone Legend

Conventional VLBI at that time

Kashima – Tateyama baseline

Evolution of VLBI System

more sophisticated **RF direct sampling**

No use of analog frequency converter

Simple receiving system (minimum use of analog circuits)

Proof-of-Concept Experiment

DSAMS: Direct Sampling Applied to Mixed Signals

Proof-of-Concept Experiment DSAMS VLBI experiment for S/X bands TSUKUBA 32m KASHIMA 11m X-BAND S-BAND X-BAND S-BAND LNA I NA LNA LNA ANTENNA ANTENNA CABIN CABIN E/O E/O Optical Fiber **Optical Fiber** O/E O/E OBSERVATION OBSERVATION $\mathbf{1}$ ROOM ROOM AMP 10G Ether 10G Ether SAMPLER SAMPLER PCPC VDIF ADX-831 ADX-831 SG(8192MHz) SG(8192MHz) 10MHz 1PPS 10MHz 1PPS

DSAMS: Direct Sampling Applied to Mixed Signals

Results of DSAMS VLBI Experiment

DSAMS VLBI Experiment

Wideband Bandwidth Synthesis (WBWS)

Conventional Bandwidth Synthesis

Wideband Bandwidth Synthesis (WBWS)

Search Function

Conventional Bandwidth Synthesis

$$F(\Delta\tau,\Delta\dot{\tau}) = \left| \int_0^B \left\{ \int_0^T S(f,t) e_0^{-i2\pi f_0 \Delta \dot{\tau} t} dt \right\} e^{-i2\pi \Delta \tau f} df \right|$$

Wideband Bandwidth Synthesis

$$F(\Delta\tau,\Delta\dot{\tau}) = \left| \int_0^B \left\{ \int_0^T \underbrace{S(f,t)}_{\uparrow} e_0^{-i2\pi(f_0+f)\Delta\dot{\tau}t} dt \right\} e^{-i2\pi\Delta\tau f} df \right|$$

combined cross spectrum over all bands

 f_0 : reference RF frequency

Kashima—Ishioka baseline

Frequency Allocation

combine all bands without any correction

combine after band delay and phase corrections using reference scan data

another example

Frequency Allocation

Bandwidth : 1024MHz

after Wideband Bandwidth Synthesis

Example of Phase Spectrum after WBWS

Simulated Cross Spectrum (after WBWS)

 $\Delta TEC = +100 \ TECU$

With a Small Antenna System

MARBLE System

Easy Installation (only by human power)

VGOS (<=VLBI2010) defined by IVS VLBI Global Observing System IVS: International VLBI Service

for Geodesy & Astrometry

VGOS GOAL

- <u>1-mm position accuracy</u> on global scales
- <u>continuous measurements</u> for time series of station positions and Earth orientation parameters
- <u>turnaround time</u> to initial geodetic results of less than 24 hours

Summary of VGOS Specifications

	Current	VGOS
Antenna Size	5 - 100 m dish	~ 12 m dish
Slew Speed	~0.3 - 3.3 deg/sec	<pre>≥ 12 deg/sec (single ant) ≥ 5 deg/sec (pair ant)</pre>
Sensitivity	200-15.000 SEFD	≤ 2,500 SEFD
Frequency Range	2/8	2 – 14 GHz
Polarization	RHCP	Dual Linear Polarization
Data Rate	128, 256 Mbps	8 – 16 Gbps future 32 Gbps
Data Transfer	Ship disks, some e- transfer	e-transfer, e-VLBI, some ships

VGOS Network anticipated for 2017

Strong in the North Polar Region Weaker in the Americas and Pacific Region

First VGOS Antenna in Japan

lshioka **13** m GSI

Outlook for the future

- Wideband Bandwidth Synthesis (WBWS) on the inter-continental baseline to proof ionospheric correction
- Evaluate broadband system proposed in VGOS
- Continuous technology development for e-VLBI

