Broadband VLBI System GALA-V and Its Application for Geodesy and Frequency Transfer

Mamoru Sekido, K.Takefuji, H.Ujihara, T.Kondo, M.Tsutsumi, Y.Miyauchi, E.Kawai, S.Hasegawa, R.Ichikawa, Y.Koyama, Y.Hanado, J.Komuro, K.Terada, K.Namba, R.Takahashi, K.Okamoto, T.Aoki, T.Ikeda (NICT) K.Watabe, T.Suzuyama (AIST/NMIJ) R.Kawabata, M.Ishimoto, T. Wakasugi (GSI)

EVGA2017@Chalmers Univ. Tech.

Remarks from our Broadband VLBI Experiences

1. Broadband VLBI is tolerant to RFI

It may sound strange, but true. (No enouch time to explain today.)

- 2. Sub-picosecond delay precision is enabled by Broadband even with small (1.6-2.4m) antenna pair. It is promising the great delay precision of VGOS.
- **3. RF Direct Sampling enables stable Broadband group delay measurement (Pcal free).**

Contents of this Presentation

• Components of the GALA-V System

- Broadband Feed and Antenna performance
- RF-Direct Sampling
- Broadband Bandwidth Synthesis and Phase Calibration with radio source

Broadband VLBI Experiments

- Delay measurement precision (Conventional S/X v.s. Broadband)
- Geodetic Solution and our Clock comparison

GALA-V Project Overview

Frequency comparison by using Transportable Broadband telescopes

- VLBI Sensitivity :VLBI Sensitivity = $\propto D_1 D_2 \sqrt{BT}$ B: 32MHz → 1024MHz (32 times)
- ■Radio Frequency : 3-14 GHz
- ■Data Acquisition : 4 band (1024 MHz width)
 - Nominal Freq. Array: Fc=4.0GHz, 5.6GHz, 10.4GHz, 13.6GHz
 - Effective Bandwidth : 3.8GHz (10 times more than Conventional)

Broadband VLBI Stations in Japan

Reason why NICT Developed own Broadband Feeds

SEFD [Jy]

14

Data Acquisition System

Advantages of RF-Direct Sampling Technique possible Pcal-free system

Advantages of Direct sampling

- 1. Simple and less system components.
- 2. Stable inter-band phase relation

=> (Pcal,Dcal free)

Procedure of Broadband Phase Calibration with radio source

Procedure of Broadband Phase Calibration with radio source

Full Bandwidth Synthesis #1-#(6-14GHz)

Broadband VLBI Experiments

Delay Behavior Broadband Group Delay (3.2-12.6GHz) Kashima34 – Ishioka 13m

```
Exp. on 14 Aug.2015,
Freq. array=(Lower Edge=3.2, 4.8, 8.8, 11.6GHz)
```

Delay [psec]

'Small – Small' Baseline

• Small diameter antenna pair is used for Atomic Clock comparison.

• <u>Closure delay</u> relation used for 'small-small' baseline.

$$\tau_{21}(t_1) = \tau_{23}(t_1) - \tau_{13}(t_1) - \tau_{13}(t_1)\tau_{12}$$

• Advantage:

- Quick Slew and small distortion
- Large Diameter's effects are canceled out.
- Lower Cost
- Disadvantage:
 - Lower Sensitivity,
 - source structure effect in closure delay.

Delay Residual [psec]

V.S.

100

Time Interval [sec]

1000

Position Solution of MBL1-MBL2

Clock Comparison via VLBI and GPS-ppp 2016Nov25 UTC(NICT) – UTC(NMIJ)

250

200

150

GPS-VLBI

Summary

- 1. We developed Broadband VLBI Observation/Processing System
- 2. Broadband Observation is relatively robust to RFI.
- 3. Broadband (3-12GHz) observation gives higher precision delay measurement even with 1.6 m 2.4 m baseline.

Thank you for Attention

Acknowledgements

- Development of Broadband Feed was supported by a grant (2013-2014) of Joint Development Research from National Astronomical Observatory of Japan(NAOJ).
- Broadband experiments with Ishioka Station was kindly supported by GSI.
- Highs speed research network environment is supported by JGN.