30 Apr. -4th May 2017 TOW@ Haystack

RFI Influence, Survey for Broadband VLBI

Mamoru Sekido¹ & Ganesh Rajagopalan ² 1: NICT/Kashima Space Technology Center, Japan 2:MIT/Haystack Observatory, USA

Contents

- Internal RFI to Phase-cal signal
- RFI Survey for Broadband Observation: Case of NICT(GALA-V)
 - Measurement of RFI represented with Tant
 - Measurement equipment
 - Sources of RFI
 - Measurement of RFI from Broadcasting Satellite.
 - Robustness to RFI: Advantage of RF-Direct sampling
- Experience of Serious RFI to Saturate LNA

RFI to Phase-cal signal@Kas34

Kashima34 RD1608 X-band pcal phase time series

Time vs Phase

Suggested by MIT/C.Brian

RFI to Phase-cal signal@Kas34

Kashima34 RD1608 X-band channel pcal amp ratio vs. phase

- A) Re-entry of emission from Pcal antenna unit into the receiver feed.
- B) Contamination of Pcal signal by distorted signal.
- Investigation:
 - We wrapped Pcal antenna unit by aluminum foil to suppress emission.
 Though no significant improvement. Thus cause A) seems to be rejected.
 - Pcal pulse signal shape in time domain might resulting cause B), just in case.

Lesson from Broadband Observation

Radio Frequency (GHz)

External RFI Measurement

- Receiving power of RFI at Detector depend on Gr,G1,G2,and Loss of the receiver.
- Ratio of RFI power w.r.t. noise level depend on the receiving bandwidth. Our Strategy:
- We use RFI input power defined by Antenna temperature after calibration of receiver gain under the condition the receiving system works in linear response region..
- Advantages: Free from RBW of measurement, Easy to understand the influence for radio telescopes.
- Drawback: Antenna temperature depend on the antenna gain used for measurement.

Tsky,Trx Measurement by Y-factor

Equipment:

- FEED: Schwarzbeck BBHA-9120D (0.8-18.5GHz)
- LNA:B&Z BZP118UD1(G=32dB, NF=2dB, f=0.1-18GHz)
- Spectrum Analyzer: Rohde&Schwarz FSV30

Measurement Condition:

- Polarization-V(all sites), H(NMIJ)
- North/East/South/West Directions

SchwarzBeck9120D Double Ridged Horn

Beam width ~ 30 deg.

Isotropgewinn

Beam pattern of survey antenna

Broadband RFI Survey Sites NICT-HQ(Koganei) NMIJ(Tsukuba) NICT (Kashima)

RF of 2nd Building. Communication Antenna for TWSFTT(14GHz), Other emission from experimental system of NICT Labs.

Communication Antenna for TWSFTT(not used).

35

139

141

140

Roof Floor of Kashima 34m VLBI station Building.

NICT-HQ(Koganei 11m)

Roof Floor of Koganei 11m VLBI station Building. Relatively quiet. Surrounded by trees.

V-Polarization

V/H-Polarization Comparison (NMIJ@Tsukuba)

There were no significant difference on V/H Polarization.

Sources of RFI

- Cell phone and its base station. (1.48GHz 1.9GHz, 2.2GHz)
- 3.0 3.4 GHz: Marine Navigation Rader
- 4.25-4.35 GHz: Flight Navigation Rader (Altimeter)
- 5.15-5.35 GHz: Wireless LAN
- 9.35-9.45, 9.7-9.8 GHz: X-band Rader (Weather, Marine)
- 11.7-12.2 GHz: Broadcasting Satellite
- 12.2-12.75 GHz: Communication Satellite
 - But this may not be so serious since probability of the beam couping is low.
 - But actually it may happen.

Influence of RFI from Satellite Signal

Broadcasting Satellite

The probability is low but it might have happened!! Pointing to Stellate.

There were abnormal data for a few minutes in output of bandwidth synthesis(3.3-11GHz). Each data points represent observed data with 1 sec. integration.

20:12 20:14 20:16

16 20:18 20:20 20:22 20:24 20:26 20 UTC Time of 2016/345 DOY

20:28

20:30 20:32

Current Frequency Allocation Table by Ministry of General Affairs.

Validation of Measurement Comparison of Receiving Power between Theory and Practice

Emission Power of BS Sat.

EIRP=59 dBW for BS Prop. Loss= -205.8 dB Power on the Earth:-116.8dBm

Beam width~ 1-2 deg.

Expected Rec. Power

Actual Rec. Power

T=1.e4 K(-187dBK) BW= 400MHz(86dBHz) Power=-71.8dBm

Expected Rec. Power with VGOS station

Expected full receiving power is significant, but beam coupling probability will be much less due to narrow beam width(0.1 deg.)

A Quiz on Saturation

*********** * * * * *	signal level m by T.Kor Targ	monitor for k ndo/NICT (Ve get Board is CTRL C for	5/VSSP K5/V r. 2016-12-14 K5/VSSP32 STOP 2017/04	**************************************	*********** * MONIT (* * * * *	signal level by T.Kc Tar	monitor for I ondo/NICT (Vo rget Board is CTRL C for	(5/VSSP K5/ er. 2016-12-1 K5/VSSP32 STOP 2017/0	VSSP32 VSSP64) 4) ******KONDO******	** * * * * *	ON 1 2 FOOMD - FOOMD - FOOMD - FOOMD - FOODD -	cod 2 2252000 - 1000011 Source (3273), integrate - 0.00 APT/31/13813 Source (3273), integrate - 0.00 APT/31/13813 Deby Ref (see) - 1003-01 Ref Ref (sec) - 0.00 APT/31/13813 between the second s
2017/04/13	(103) 11:21:32	2 CH 2	CH 3	CH 4	2017/04/13	(103) 11:21:4	41 CH 2	CH 3	CH 4		KOGANEJ – KASHM11 CH#3 2237.99MHz U Ibit 16MHz sampling	KOGANE) – KASHM11 CH#-4 2267,99Mtu U tibi 16Mtu sempling
+ FULL - FULL DC OFFSET	* *** ******* ******* *** * 0.8/256 53.0/256	** **** ******* ******* **** 0.3/256 57 7/256	* *** ******* ********************	* *** ****** ******* ****** *** 1.0/256 50.9/256	+ FULL DC OFFSET	** ******* ************* ******* * 1.7/256 55.1/256	* *** ****** ********** *** ***	* ** ****** ********** ** * 0.0/256 49.0/256	* *** ******* ******* ****** *** ** ** **		Server: 1.52757 μπ/μ/μ2-10, 1970117/151 11.0815 DHy, Pris (exc) : -7.668-6 Miss Nex(2)() : 1.628-1 High Pris (exc) : -7.668-6 Miss Nex(2)() : 1.628-1 42.4 -6.3 0 +6.5 +1 -6.4 -0.4 Δr (exc) : -7.64	Source 76/2749 (respectively) $P(01771311148)$ 3 Deep Ref (sec)7377-06 Ref Ref (sec) - 244-13 (a)6.56.51.60.4 -5.56.50.6 All 19-far-2017 10.00
ONE SIGMA	5510,250	5111/250										
	**************************************	monitor for K ndo/NICT (Ve get Board is CTRL C for	5/VSSP K5/V r. 2016-12-14 K5/VSSP32 STOP	************** SSP32 VSSP64) *) * * *	************ * MONIT (* *	signal level by T.Kc Tar	monitor for H ondo/NICT (Ve rget Board is CTRL C for	5/VSSP K5// r. 2016-12-14 K5/VSSP32 STOP	/SSP32 VSSP64) 1)	* * * * *	OHE 2 FOOHD = 6359811 Savere 4 (2721-25940) = 10 (Addit sempler) + 40 = (2002) (Addit - 2004) = 10 (arcs of correction) Datag Res (ve.) : = 6408e-08 (Bate Res(VA)) : = 2-108	CUL_2 200400 - KJOHN1 CUL_2 2013040 U 181 60040 employ 5 Source 2012022 2014 U 181 6004 employed 2015 2010 2014 - 100 100 employed 2010 2014 - 100 100 employed 2014 - 100 2014 - 100 2014 - 100 Employed 2014 - 100 2014
	signal level m by T.Kon Targ	monitor for K ndo/NICT (Ve get Board is CTRL C for	5/VSSP K5/V r. 2016-12-14 K5/VSSP32 STOP	**************************************	**************************************	signal level by T.Ko Tar	monitor for) ondo/NICT (Ve rget Board is CTRL C for	(5/VSSP K5/1 rr. 2016-12-14 K5/VSSP32 STOP	VSSP32 VSSP64) 1)	* * * * * * * * * * * *	CIG: 22:50040 - 6350401 - 6050401 Source: 50735 - 100 - 101 - 12400 - 800540 Source: 50735 - 100 - 100 - 200 - 101 - 101 - 101 Drig Rei (ke) :546808 - 81e Rei(X) :2186 	Cup 2022 2022 2010 - 113 10010 service 15 Source 102 2022 2010 - 113 10010 service 15 Source 102 2022 10 20 0 10 20 77 103 12 10 10 -13 Severy Are (sec)62 21 e-08 Fold Reg(V/s)23 25 e-13 Severy Are (sec)62 21 e-08 Fold Reg(V/s)33 25 e-13 24
UNE SIGMA ************************************	signal level m by T.Kon Targ	monitor for K ndo/NICT (Ve get Board is CTRL C for	5/VSSP K5/V r. 2016-12-14 K5/VSSP32 STOP 2017/04	**************************************	**************************************	signal level by T.Kc Tar	monitor for H ondo/MICT (Ve rget Board is CTRL C for	(5/VSSP K5/1 r. 2016-12-14 K5/VSSP32 STOP 2017/04	/SSP32 VSSP64) 1) ******KONDO******	* * * * * * * * *	CHE 1 21 SOLIDI 2155111 Shiro Q (2) 21 SOLIDI U TEL ISAIL SANCIO [1, 16. Shiro Q (2) 21 SOLIDI U TEL ISAIL SANCIO [1, 16. Xmg = (2005) (2) 402 - 102 M (2) 407 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	$\begin{array}{c} C(y_{1}^{2}, y_{2}^{2}) C(y_{2}^{2}, y_{2}^{2})$
	signal level m by T.Kor Targ (103) 12:00:42	monitor for K ndo/NICT (Ve get Board is CTRL C for	5/VSSP K5/V r. 2016-12-14 K5/VSSP32 STOP 2017/04 CH 3	* SSP32 VSSP64) *) * * * * * * * * * * * * * *	**************************************	signal level by T.Kc Tar (103) 12:00:4	monitor for) ondo/NICT (Ve rget Board is CTRL C for 47 CH 2	(5/VSSP K5/) er. 2016-12-14 K5/VSSP32 STOP 2017/04 CH 3	/SSP32 VSSP64) 1) 4/13 (103) 12:03:0 CH 4	* * * * * * * * * * * * * * * * * * * *	OH 1 2. FOLKE - KASHII Sunge 25.72 (25.94) Amg & Course 25.72 (25.94) Daty Re (ke) : -24.95 - 03 Rote Res(7) (-21.95 Daty Re (ke) : -24.95 - 03 Rote Res(7) (-21.95 -0.5 0 10 - 05 - 01 -0.5 0 10 - 05 - 01 -0.5 0 10 - 05 - 01	$\frac{C_{12}^{2}}{2} = \frac{22}{100} \frac{C_{12}^{2}}{2} = \frac{1}{100} \frac{C_{12}^{2}}$

Saturation is not problem for 1bit sampling

Decrease of Corr. Amp is due to Loss of Info caused by DC-bias, but not saturation.

1bit sampling Simulation [noise(3)]

1bit sampling Simulation [noise(3)+sin(5)]

Advantage of RF-Direct Sampling - Robustness to RFI -

Real Input to A/D at Kashima 34m Broadband Signal(Lower Band<8.2GHz)

Real Input to A/D at Kashima 34m Broadband Signal(Upper Band>8.2GHz)

Example of a LNA saturation due to strong RFI

 L-band receiver of Kashima 34m Radio Telescope was affected

Source of RFI (Cell Phone Base Station)

We could solve the problem

- Super Conductor Filter(Toshiba Co. Ltd) in front of LNA.
- By negotiation with Cell Phone carrier Company, they paid for the filter cost(~87k USD).

Background

• Superconducting materials have low surface resistance characteristic.

Surface resistance characteristic of Superconducting film (YBCO * 1)

T.Hashimoto, et al., IEICE Trans. Electron., vol. E86-C, No. 8, pp. 1721-1728, Aug. 2003.

Dependence of Resonator Number

H. Ikeuchi, T. Kawaguchi, N. Shiokawa, and H. Kayano, "L-band Small High-Sensitivity Microwave Receiver Module using Superconducting Filter," 2015 Asia-Pacific Microwave Conf. Dig., WE1C-5, Dec. 2015.

APMC 2015 Fig. 6

Thermal Insulating RF interface

Compatibility of both low loss and thermal insulation

RF interface Comparison

Coaxial cable

Coaxial cable

Chau-Ching Chiong, et. al, "Design and Measurements of Cryogenic MHEMT IF Low Noise Amplifier for Radio Astronomical Receivers," 4th European Microwave Integrated Circuits Conference, Sept. 2009.

Require the large cryocooler for large thermal conduction

Conventional technique

Example of installation to Usuda 64 m radio telescope

Comparison of Receiver Noise Temperature

Conventional Cryo-receiver

Cryo-receiver with thermal insulating interface technique

Xat L-band

Constitution of Cryo-receiver

Conventional Cryo-receiver

TOSHIBA's Cryo-receiver

Compare of Receivers

ltem	Conventional receiver	TOSHIBA's receiver
Power consumption	3000W	80W
Noise temperature	31K	32K
Operation temperature	20K	77K
Volume	Over 100 liters	2 liters
Weight	Over 100Kg	2Kg
Life time	About 1 year	Over 5 years
Ambient temperature	0~30 degrees	-40~55 degrees
Cooling water	necessity	unnecessary
Pipe arrangement of He	necessity	unnecessary

Energy saving, low cost, long life time, and high reliability

Measurement in Usuda 64m Radio Telescope

Actual cryo-receiver Tsys=96K @1.4GHz Tsys=85K @1.6GHz

<u>Toshiba's cryo-receiver</u> Tsys=56K @1.4GHz band Tsys=65K @1.6GHz band