# Distant Frequency Comparison with Broadband VLBI System

National Institute of Information and Communications Technology Space Time Standards Laboratory

### Comparison with Other T&F Transfer Techniques

| Techniques     | RunningCost      | Distance          | Signal<br>Source        | Precision        | Advantages                                                      | Dis Adv.                                           |
|----------------|------------------|-------------------|-------------------------|------------------|-----------------------------------------------------------------|----------------------------------------------------|
| Fiber Link     | Depend on Fiber  | <3000km ?         | Local Laser             | $\bigcirc$       | Quite High<br>Precision                                         | Fiber availability<br>Limited Distance             |
| TWSTFT<br>(CP) | ~ 200k USD/yr?   | Earth<br>Diameter | Satellite<br>R=4.2 e7 m | $\bigcirc$       | High Precision                                                  | Operation Cost<br>Satellite Availability           |
| GNSS           | Low              | Earth<br>Diameter | GNSS Satellite          | $\bigtriangleup$ | Low Cost                                                        | Satellite Orbit<br>dependent, Day<br>Boundary jump |
| VLBI           | Relatively Lower | Earth<br>Diameter | Natural Radio<br>source | $\bigtriangleup$ | Independent<br>from satellite<br>condition, Low<br>running cost | Initial cost                                       |

Establishment of independent frequency comparison techniques is important for accuracy assurances.

# Frequency link with VLBI Observation between INRiM+INAF - NICT



# Broadband VLBI with Small Antenna

# **Frequency comparison by using Transportable Broadband telescopes**

- ■Radio Frequency : 3-14 GHz (VGOS Compatible)
- ■Data Acquisition : 4 band (1024 MHz width)
  - Nominal Freq. Array: Fc=4.0GHz, 5.6GHz, 10.4GHz, 13.6GHz
  - Effective Bandwidth : 3.8GHz (10 times more than Conventional)





### **NINJA Feed Dual-Pol mounted in July**



#### Data Acquisition System: Simple and Stable without analog frequency conversion



# 'Small – Small' Baseline

• <u>Closure delay</u> relation used for 'small-small' baseline.

$$\tau_{21}(t_1) = \tau_{23}(t_1) - \tau_{13}(t_1) - \tau_{13}(t_1)\tau_{12}$$

- Advantage of Small Antenna:
  - Quick Slew and Small Distortion
  - Large Diameter's deformation effects are canceled out.
  - Lower Cost
- Disadvantage:
  - Limited Sensitivity, ←Boosted by Large Antenna
  - source structure effect in closure delay.



### Sub-pico sec. precision by Broadband Group Delay (3.2-12.6GHz) Kashima34 – Ishioka 13m

Exp. on 14 Aug.2015, Freq. array=(Lower Edge=3.2, 4.8, 8.8, 11.6GHz)





**Alan Standard Deviation** 



#### **VLBI Clock Comparison Testing between NICT-NMIJ**



#### Clock Comparison via VLBI and GPS-ppp 2016Nov25 UTC(NICT) – UTC(NMIJ)



250

200

150

GPS-VLBI

#### Clock Difference of Long Time Span UTC(NICT)-UTC(NMIJ) By VLBI and GPSppp(BIPM)





#### Comparison of UTC(NICT)-UTC(NMIJ) via Broadband VLBI and GPSPPP(BPIM): Dec. 2017



Interval [sec]

# Summary

- The First frequency transfer experiment with Broadband VLBI over intercontinental baseline is under preparation.
- VLBI can be the alternative choice of long distance frequency transfer.
- Advantage of VLBI technique is free from satellite (orbit info., transponder cost) and lower running cost.
- Measurement error will be order of 1.e-16s/s in 10 days of experiment.
- Subject to be solved are: Data transfer, radio source selection, Broadband signal synthesis on very long baseline.