LEO衛星による サブミリ波スペースVLBIの検討

朝木 義晴(宇宙科学研究所), 三好 真(国立天文台), 高橋 労太(苫小牧高専)

概要

太陽同期の低周回(Low-Earth-Orbit: LEO)衛星と地上 サブミリ波望遠鏡によるスペース VLBIの概念検討を 行った。地上望遠鏡が 2~3 局程度しかなくても高度 800 kmの極軌道を周回する LEO衛星との組み合わせ により、驚くほど密な(U, V)サンプルを得ることが可 能になり、サブミリ波を使うことで超高空間分解能かつ 高画質なサブミリ波イメージを取得できる。ここでは Sgr A*ブラックホール・シャドウ(BHS)を観測対象 とした場合、5局の地上望遠鏡と1機の LEO サブミリ 波望遠鏡衛星で構成するサブミリ波スペース VLBI に よるイメージング・シミュレーション結果について報告 する。

はじめに

スペース VLBI 観測の利点として、「はるか」/VSOP の成功に代表されるように地上電波望遠鏡同士では得 られない地球直径以上の長基線長を得ることがすぐに 思い浮かぶ。果たしてそれだけだろうか?ミリ波より短 い観測波長になれば対流圏の水蒸気による吸収のため に観測できる周波数領域は限定され、また望遠鏡の建設 サイトも極めて限られてしまう。人工衛星ならば地球大 気中の水蒸気による吸収の影響から逃れることができ るため、サブミリ波干渉計は長基線以外にも大きな魅力 を持つだろう。

だが、干渉計ともなれば、1 機の望遠鏡衛星だけ では成立しない。2 機以上の衛星製造はミッション・コ ストを大きくつり上げ、魅力ある観測計画も実現するこ とが非常に難しくなる。一方、スペースと地上の VLBI では、地上望遠鏡の数は数局程度しかないため、衛星が 空間分解能を重視した「はるか」や ASTRO-G 衛星のよ うな軌道をとる場合、(U, V) サンプルを十分に埋めた 高い画質の撮像能力を得ることは不可能となる。

しかし、1 機の低周回軌道 (Low-Earth-Orbit: LEO) 衛星のサブミリ波望遠鏡を用意することにより、地上の 望遠鏡が数局であっても理想的な (U, V) サンプルが得 ることができる [1]。何故なら、LEO 衛星の軌道周期が 1 時間強であるので、数時間以上の観測時間では、LEO 衛星と地上望遠鏡は (U, V) 上で何重にもなる軌跡を作 り、その結果、非常に密に (U, V) 平面上を埋めていく ことになるからだ。ここでは VLBI 観測シミュレーショ ン・ソフトウェア ARIS [2] を使い、SVLBI サブミリ波

Figure 1. サブミリ波 VLBI シミュレーションで仮想した地上 望遠鏡。

観測を行った場合の天体画像のクオリティについて調査 した結果について報告する。

サブミリ波 VLBI 観測シミュレーション

図1に、今回のシミュレーションで仮定したサブ ミリ波地上望遠鏡を示す。このうちグリーンランド局は まだ建設されていない架空の局であり、台湾の ASIAA で建設計画が推進されている。ALMA と SMA は位相 合成によって感度向上を図ると仮定した。今回の観測シ ミュレーションでは誤差として熱雑音のみ考慮し、観測 周波数は 350 GHz (ALMA のバンド 7) において衛星 望遠鏡も含めて全てのアンテナが ALMA スペック受信 機を持つと仮定した。観測帯域幅は4 GHz とした。図2 に 13 時間の観測での地上望遠鏡のみで得られる (U, V) サンプルと干渉計のダーティ・ビーム (いわゆるポイン ト・スプレッド関数)を示す。

衛星望遠鏡は、高度 800 km で極軌道を周回する LEO 衛星とした。アンテナロ径は 10 m を仮定し、それ 以外のサブミリ波望遠鏡としての性能は ALMA 準拠と した。図 3 に、13 時間の観測でスペース望遠鏡と地上 望遠鏡で得られる (U, V) サンプルとそのダーティ・ビー ムを示す。図 2 と比較して、(U, V) サンプルが大幅に増 えたことによりサイドローブが大きく減じたことが分

Figure 2. 地上望遠鏡のみで得られる (*u*, *v*) サンプル(左)と、 干渉計ダーティ・ビーム(ポイント・スプレッド関 数)(右)。

Figure 3. 1 機の LEO 衛星と地上望遠鏡で得られる (*u*, *v*) サンプル(左)と、干渉計ダーティ・ビーム(右)。

かる。

天体イメージとして Sgr A*のブラックホール・シャ ドウ(BHS)を仮定し、ゼロ基線長におけるフラックス 密度を 2 Jy に設定した。また、イメージは時間定常とし た。図4に用いた天体イメージ・モデルを示す。スピン・ パラメータ 0.0、観測者から見た降着流のエッジオンから の傾きが 20°のイメージをモデル A、スピン・パラメー タ 1.0、降着流の傾きが 45°のイメージをモデル B とす る。熱雑音込みの天体のビジビリティの生成は、ARIS を用いて行った。得られたビジビリティは FITS-IDI 形 式でディスク・ファイルにセーブされる。このファイル を AIPS で読み込み、CLEAN イメージングを行った。

結果

地上望遠鏡のみのサブミリ波 VLBI 観測シミュレー ションで得られた天体イメージを図 5 に示す。モデル A とモデル B を比較すると両者の間に違いがあるのが見 てとれるが、もし事前に情報がなかった場合にそれぞれ のイメージからそれぞれのモデル(特にシャドウ部)を 推定するのは困難であることが予想される。

一方、LEO 衛星と地上望遠鏡との組み合わせのス ペース VLBI で得られるイメージを図6に示す。(U, V) サンプルが密にとれていることから、非常にクオリティ の高いイメージを得ることができた。2つのモデルの違

Table 1. サブミリ波スペース VLBI シミュレーションの条件。

項目	条件
観測局	ALMA(位相合成), SMA(位相
	合成), LMT, IRAM, Greenland
観測周波数	350 GHz (BAND7)
観測帯域幅	4 GHz
誤差要因	熱雑音
スペースアン	高度 800 km の太陽同期軌道
テナ	
天体イメージ	ブラックホール・シャドウ
トータルフラ	2 Jy
ックス密度	
時間変動	なし

Figure 4. BHS 像のモデル。左は BH スピン a/M が 0.0、降着 流の回転軸の傾き角は 20°。右は BH スピンが 1.0、 降着流の回転軸の傾き角は 45°。

いを判別することが十分に可能であり、ブラックホール 質量、スピン・パラメータなどの推定において大きな制 限をかけることが可能となる。

まとめ

スペース望遠鏡として LEO 衛星を使った場合のス

Figure 5. 地上望遠鏡のみの VLBI シミュレーションで作成した Sgr A* BHS のイメージ。モデル A(左)とモデル B(右)。

Figure 6. サブミリ波スペース VLBI シミュレーションで作成 したイメージ。モデル A(左)とモデル B(右)。

ペース VLBI の観測シミュレーションから、サブミリ波 スペース VLBI の概念検討を行った。地上局だけでは十 分なクオリティが得られないケースにいても、LEO 衛 星が1機加わることによって理想的な (U, V) が得られ、 クオリティの高いイメージが得られることが分かった。 今後の課題として、モデルのイメージが星間プラ ズマによる散乱を受けたケースについて検討し、どの周 波数帯であれば BHS のイメージを判別可能なほどに得 ることが可能であるかを検討する。また、VLBI におけ る様々な観測誤差(地球回転、中性大気超過遅延、電離 層による遅延、時刻同期、軌道決定)を考慮した場合の イメージング・シミュレーションについても検討し、概 念設計をより詳細に詰めていきたいと考える。

参考文献

[1] Asaki, Y. & Miyoshi, M., ASP, 59, 889, 2007.

[2] Asaki, Y. et al., PASJ, 59, 397, 2007.