Annual Parallax Distance and Secular Motion of the Water Fountain Source IRAS 18286-0959

(「宇宙の噴水」天体 IRAS 18286-0959 の年周視差距離と銀河系内運動)

Hiroshi IMAI¹, VERA 中距離円盤プロジェクトチーム²

¹1Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University ²2Mizusawa VLBI Observatory, National Astronomical Observatory of Japan

Abstract

We report on results of astrometric observations of H_2O masers in the "water fountain" source IRAS 18286-0959 with the VERA during 2007 October-2009 September. These observations yielded an annual parallax of IRAS 18286-0959, $\pi = 277 \pm 41~\mu as$, corresponding to a heliocentric distance of $D = 3.61^{+0.63}_{-0.47}$ kpc. The maser feature, whose annual parallax was measured, showed the absolute proper motion of $(\mu_{\alpha}, \mu_{\delta}) = (-3.2 \pm 0.3, -7.2 \pm 0.2) [mas~yr^{-1}]$. If this maser feature is associated with a precessing, bipolar jet in IRAS 18286-0959 and moving in the south-south-west direction, the secular motion of the IRAS 18286-0959 system roughly follows the Galactic rotation. However, this possibility is ruled when taking into account the intrinsic motion of the maser feature in the feature cluster of IRAS 18286-0959, which does not seem to trace the motion of the bipolar jet [6]. The proximity of IRAS 18286-0959 to the Galactic midplane ($z \approx 10~pc$) suggests that the parental star of the water fountain source in IRAS 18286-0959 should be intermediate-mass AGB/post-AGB star, but the origin of a large deviation of the systemic motion from the motion expected from the Galactic rotation curve is still unclear.

References

- [1] Dehnen, W., & Binney, J. 1998, MNRAS, 294, 429
- [2] Francis, C., & Anderson, E. 2009, New Astron., 14, 615
- [3] Hammersley, P. L., Garzón, F., Mahoney, T., & Calbet, X. 1995, MNRAS, 273, 206
- [4] Imai, H., et al., 2012, PASJ, submitted
- [5] Reid, M. J., et al. 2009, ApJ, 700, 137
- [6] Yung, B. H. K., Nakashima, J., Imai, H., Deguchi, S., Diamond, P. J., & Kwok, S. 2011, ApJ, 741, 94

Table 1: Location and 3D motion of IRAS 18286-0959 in the Milky Way estimated from the VERA astrometry

Parameter	Value
Galactic coordinates, (l, b) [deg] ¹	(21.80, -0.13)
Heliocentric distance, $D [kpc]^1 \dots$	3.61 ± 0.63
Systemic LSR velocity, V_{sys} [km s ⁻¹] ¹	60 ± 5
$R_0 [\mathrm{kpc}]^2 \dots \dots$	8.0
$\Theta_0 \ [\mathrm{km \ s^{-1}}]^2 \ \dots$	220
$(U_{\odot}, V_{\odot}, W_{\odot}) \text{ [km s}^{-1}]^3 \dots$	(7.5, 13.5, 6.8)
$z_0 [pc]^4 \dots \dots$	16
$R_{\rm gal}$ [kpc]	4.84 ± 0.50
z [pc]	7 ± 1
Case 1: fixed in the system	
V_R [km s ⁻¹]	66±19
$V_{\theta} [\mathrm{km \ s^{-1}}] \dots \dots$	148 ± 25
V_z [km s ⁻¹]	-1 ± 20
Case 2: moving in $(-3, -5)$ [mas yr ⁻¹]	
with respect to the system	
$V_R [\mathrm{km \ s^{-1}}] \dots$	6±13
$V_{\theta} [\mathrm{km \ s^{-1}}] \dots \dots$	228 ± 17
$V_z [\text{km s}^{-1}] \dots $	-7 ± 20
11	

¹Input value for IRAS 18286-0959.

²Input value for the Sun in the Milky Way.

³Motion of the Sun with respect to the local standard of rest, cited from [2] (c.f., [1]).

⁴Height of the Sun from the Galactic mid-plane, cited from the reference [3].

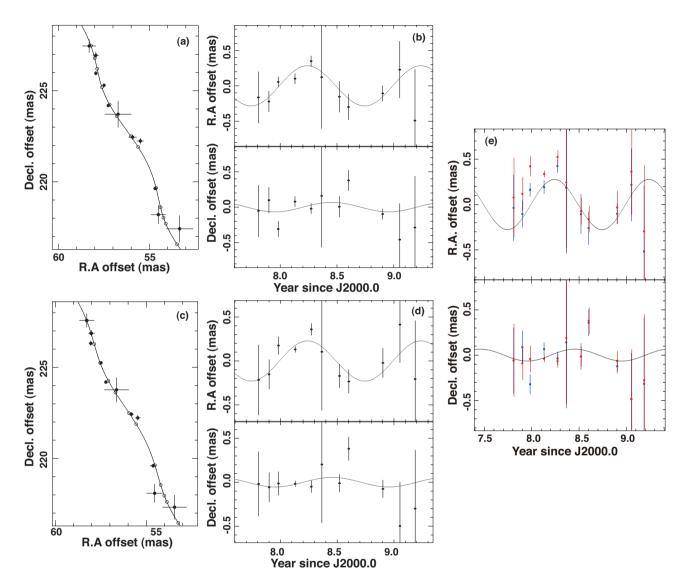


Figure 1: Motions of the $53.4~\rm km~s^{-1}$ and $53.0~\rm km~s^{-1}$ components of $\rm H_2O$ masers in IRAS 18286–0959 and the kinematical models for these motions. (a) R.A. and decl. offsets with respect to the phase-tracking center of the $53.4~\rm km~s^{-1}$ component. A filled circle shows the data point observed and used for the annual parallax measurement. A solid curve shows the modeled motion including an annual parallax and a constant velocity proper motion. A opened circle indicates the spot position expected in the model at the observation epoch. (b) R.A. variation of the $53.0~\rm km~s^{-1}$ component along time. The estimated annual parallax and linear proper motion are subtracted from the observed spot position. A solid curve shows the modeled annual parallactic motion. (c) Same as (a) but for the $53.4~\rm km~s^{-1}$ component. (d) Same as (b) but for the $53.0~\rm km~s^{-1}$ component. (e) The result of the combined annual parallax fitting. Blue and red data points shows those of the $53.4~\rm km~s^{-1}$ and $53.0~\rm km~s^{-1}$ components, respectively.