

Result:	Resu
■ 2nd step	¥ 90
– 1st stepと同様に,	
f :ジェット寄与	
a : Lorentz因子分布	» –
$oldsymbol{ heta}_{\mathbf{C}}$:クェーサー見込み角の限界	
は固定して、それぞれのケースで尤もらしいBALクェーサーへの	
見込み用の範囲をMonte-Carlo法により計算.	
– intrinsicな光度分布 0 は1st stepにより求めた値を用いた.	31 -
- 結果	
 全光度に占めるジェット寄与は50%ぐらいでようやくBAL/non-BAL のフラックス分布の違いを再現できる. 	60
 得られた範囲の一部はElvis+ 2000で予言されているBALクェーサーの見込み角を支持する結果になる. 	30 -
- 懸案事項	E () [
・どこまでが解として許容できる確率になるんだろう?	minimu
School of Scienc. The University of Tokyo 🚫	

