JVC Symposium 2014 Program

Wednesday, 29 October (First Day)

Time	Speaker (Affiliation)	Title	Abstract
		English Session (Ch	nair: Ryoji Kawabata)
13:00-13:10	Toshihiro Omodaka	Opening Remarks	
(10 min)	(Kagoshima Univ.)		
13:10-13:40	Yoshiaki Hagiwara	Recent status of VLBI	Astronomical observations using VLBI in Japan have been made
(30 min)	(NAOJ)	activities in Japan and	mainly with the VERA and Japanese VLBI Network (JVN) that
		east Asia	is being operated by the University Association.
		(Invited)	Recently, the open use observation of the KaVA that consists of
			the VERA and Korean VLBI Network (KVN) has begun, and
			outcomes in science are being expected.
			VLBI experiments have been conducted by telescopes in East
			Asia VLBI Network (EAVN) in which more than 10 telescopes in
			China, Japan, and Korea participate. To realize the EAVN, a lot
			of efforts have been made to detect fringes from these telescopes
			at the first stage of the experiments, and also operational issues
			and troubles associated with arranging inhomogeneous
			telescopes are being discussed.
			This talk will further describe the recent status of these VLBI
			activities in Japan and east Asia, and discuss the future
			prospects of the EAVN.
13:40-14:00	Kenta Fujisawa	Japanese VLBI	Japanese VLBI Network (JVN) is a VLBI network operated by
(20 min)	(Yamaguchi Univ.)	Network (JVN)	National Astronomical Observatory of Japan together with seven
		(Invited)	universities. The network consists of more than 10 radio
			telescopes with diameter of 11 m to 64 m owned or operated by
			research institutions and universities. The baseline length of
			JVN ranges 50 - 2500 km, and the observation frequencies are
			6.7, 8 and 22 GHz. JVN started its operation in 2005 and there
			are about 20 published papers so far. Main subjects of research
			are AGNs and star forming regions by using masers as probes.
			From 2010, an effort to extend the VLBI network to the East Asia
			in cooperation with China and Korea has been made. A VLBI
			survey observation of methanol maser sources was published in
			2014 as the first result of EAVN.

14:00-14:30	Hideyuki Kobayashi	Status and future of	We will present the status and near future plan of VERA.	
(30 min)	(NAOJ)	VERA		
14:30-14:50				
(20 min)	Short Break			
14:50-15:35	Axel Nothnagel	The IVS and its VLBI	The International VLBI Service for Geodesy and Astrometry	
(45 min)	(Institute of Geodesy	Global Observing	(IVS) has made enormous progress advancing towards the	
	and Geoinformation,	System VGOS	realization of the VLBI Global Observing System (VGOS). The	
	University of Bonn)	(Invited)	key elements of the new generation IVS installations are fast	
			rotating radio telescopes capable of receiving broadband quasar	
			radiation between 2 and 14 GHz in a continuous frequency band.	
			A number of new telescopes have been built or are approved	
			providing a good basis for a thorough refurbishing of the IVS	
			network as a whole. Together with addressing a number of other	
			technique-specific issues, the IVS is on a good path to fulfill the	
			requirements of the Global Geodetic Observing System (GGOS).	
			This presentation will explain the status of VGOS and its future	
			path of development.	
15:35-16:05	John Gipson	NASA's Space Geodesy	NASA' SGP (Space Geodesy Project) has completed a prototype	
(30 min)	(GSFC)	Program—An Informal	core station at the Goddard Geophysical and Astronomical	
		Perspective	Observatory (GGAO) near Goddard Space Flight Center	
		(Invited)	including state-of-the-art VLBI, SLR, and GNSS and a DORIS	
			system. NASA has taken broadband data between GGAO and	
			Westford. I present preliminary results from the analysis of the	
			broadband data, and discuss NASA's plans to expand the space	
			geodetic network.	
16:05-16:25	Harald Schuh	VLBI activities at GFZ	The recently established VLBI group at the GFZ German	
(20 min)	(GFZ German	Potsdam	Research Centre for Geosciences Potsdam is working on various	
	Research Centre for		topics of geodetic and astrometric VLBI. Main focus of the	
	Geosciences Potsdam)		research is oriented to observing satellites and radiosondes by	
			VLBI radio telescopes with the aim to link the various reference	
			frames.	
16:25-16:45	Monica Orienti	The Italy-Japan	I will present the bilateral collaboration between Italy and Japan	
(20 min)	(INAF-IRA)	bilateral collaboration	on the development of a East-Asia-Italy VLBI network. I will	
			show preliminary scientific and technological results obtained so	
			far and I discuss about future perspective. The advent of the	
			64-meter Sardinia Radio Telescope, in addition to the Medicina	
			and Noto antennas, allows the Italian VLBI network which can	
			work together with the VERA array for a ten-thousand km	

			baseline, representing a step forward in our study of very			
			compact objects.			
16:45-17:05	Hiroshi Imai	Activity of SKA-JP	The Astrometry Science sub-Working Group in the Japan SKA			
(20 min)	(Kagoshima Univ.)	Astrometry	Consortium (SKA-JP) has exchanged the information about SKA			
		sub-Working Group	and the current related activities that will be linked to future			
			radio astrometry. We have made some consideration and case			
			studies that focus on low-frequency astrometry for hydroxyl			
			masers, pulsars, and other compact non-thermal sources. More			
			clearly the SKA specification for radio astrometry is being fixed,			
			we can make design future radio astrometry projects with the			
			SKA. This will be drafted in our SKA-JP Science Book. Here we			
			will present our such current actions related to the SKA			
			astrometry.			
19:00-21:00		1				
(120 min)	Banquet					

Thursday, 30 October (Second Day)

Time	Speaker (Affiliation)	Title	Abstract
		Science Session (Chair	:: Satoko Sawada-Satoh)
9:00-9:20	Kazuhito Motogi	Accelerating H2O	We report on a long-term VLBI and single-dish monitoring for
(20 min)	(Yamaguchi Univ.)	maser Jet from a	intermittent flare activities of a highly blue-shift dominated
		Face-on High Mass	22-GHz H2O maser associated with a southern high mass young
		Young Stellar Object.	stellar object, G353.273+0.641. There were five maser flares
			during five years, and maser distributions in four of them
			successfully traced by VERA. Most of maser clumps were
			recurrently excited within 100x100 AU^2 region around the
			radio continuum peak, while their spatial distributions
			significantly varied between each flare. This confirmed that
			episodic propagations of outflow shocks recurrently invoke
			intermittent flare activities. Overall distribution of maser clumps
			suggests a bipolar jet almost along the east-west direction. The
			jet is in a nearly face-on geometry with an inclination angle of
			816 degree from the line-of-sight, that was evaluated from 3D
			kinematics of masers. We also detected annual parallax. A
			derived distance of 1.70 \pm 0.19 kpc well agrees with the
			commonly-used photometric distance. Bi-weekly single-dish
			monitoring using Hokkaido University Tomakomai 11-m radio

			talagana has sharm that a greater til and landing and
			telescope has shown that a systematic acceleration continues
			over four years beyond a lifetime of individual maser clumps.
			This fact suggests that the H2O maser traces a region where
			molecular gas is steadily accelerated near the root of the bipolar
			jet.
9:20-9:40	Nobuyoshi Hiramoto	Appearing phase of the	We have studied the appearing phase of 6.7 GHz methanol maser
(20 min)	(Yamaguchi Univ.)	6.7 GHz methanol	in the process of high-mass star formation. The Red MSX Source
		maser in the process of	(RMS) survey is a sample of 1200 massive young stellar objects,
		high-mass star	compact and ultra-compact HII regions selected from 2000 MSX
		formation	and 2MASS sources. We have searched 6.7GHz methanol maser
			emission towards 584 RMS sources, and found 99 maser sources
			including two new detection. Based on the infrared spectral
			energy distribution of the detected and non-detected sources, it
			has been found that the maser is associated with earlier stage of
			star formation, although the exact stellar age cannot be
			determined. We also found a negative correlation between the
			maser luminosity and the stellar age, and a positive correlation
			between the maser luminosity and the accretion rate. These
			correlations indicate that the maser is associated with the active
			accretion phase in the early evolutionary stage. The latter
			correlation can be simply explained by that the higher accretion
			luminosity cause the higher maser luminosity. Otherwise, higher
			accretion rate can cause higher methanol column density by
			enhanced dust evaporation near the host object, consequently
			increasing the maser luminosity.
9:40-10:00	Koichiro Sugiyama	The VLBI monitor	We have initiated a Very Long Baseline Interferometer (VLBI)
(20 min)	(Ibaraki Univ.)	project for proper	monitor project of the 6.7 GHz methanol maser sources by using
		motion measurements	the Japanese VLBI Network (JVN) and East-Asian VLBI
		of the 6.7 GHz	Network (EAVN) since August 2010. In the last decade,
		methanol masers using	interferometric observations at submillimeter and infrared
		the JVN/EAVN	wavelengths have demonstrated the existence of rotating disks
			around forming high-mass protostars. The dynamic motions and
			the evolution of surrounding disks, however, remains largely
			unknown. Proper motions on the disk are expected to be tiny of a
			few milliarcsecond per year (mas/yr) at radii of hundred au scales
			from central protostars, and therefore the motions can be
			measured only by VLBI observations. In our VLBI monitor
			project, we have tried to measure 3-dimensional velocity
			project, we have tried to measure 5-dimensional velocity

			structures on the disk through proper motion measurements of	
			the 6.7 GHz methanol masers in 36 target sources, which are at	
			mainly southern hemisphere, every year in 2010-2013. The	
			systematic proper motion measurements in many sources can	
			provide us chances to not only have evidences of directly rotating	
			and inward motions on the disk, but also make clear the	
			evolution of the disk. In this presentation, we will report progress	
			of the proper motion detections.	
10:00-10:20	Yu Saito	Short-period variation	The 6.7 GHz methanol masers associated in high-mass star	
(20 min)	(Ibaraki Univ.)	of 6.7 GHz methanol	forming regions have been found to show periodic flux variations	
		masers	in some sources. To detect an extremely short-period (about 10	
			days) variation, we conducted daily monitoring observations to	
			51 maser sources for 20 days in Aug. 2013. These used the	
			Takahagi antenna. As a result, variability with a period of about	
			10 days was detected in the maser source 0.167-0.446 with the	
			maximum flux density of 5 Jy and the variable rate of about 30%,	
			and 4 sources show possible variabilities with the period of 20-30	
			days. We plan to carry out additional daily monitoring	
			observations to these 5 sources for (more than) 2 months to	
			confirm these variabilities.	
10:20-10:30				
(10 min)			Short Break	
	Technology Development Session (Chair: Satoko Sawada-Satoh)			
10:30-10:50	Hiroshi Ikeda	Cooling test of VLBI	Cooling of the antenna front-end unit is essential in VLBI2010	
(20 min)	(Tsukuba Univ.)	antenna front-end unit	standard. And report the results to design a cryostat for cooling	
			the test, since cooling was tested using the 4K refrigerator by	
			100V specification.	
10:50-11:10	Yoshihiro Fukuzaki	Construction of VGOS	The Geospatial Information Authority of Japan (GSI) is now	
(20 min)	(GSI)	antenna (3)	constructing new VLBI observing facilities for Next-Generation	
			VLBI (VGOS), and the antenna itself is complete. In this	
			presentation, the preliminary receiving performance of the new	
			antenna will be reported.	
11:10-11:30	Mamoru Sekido	Development Status of	Optical primary frequency standards, which is expected to	
(20 min)	(NICT)	Broadband VLBI	improve the accuracy of the definition of one second, are being	
		System (Gala-V) -(II)	developed. From the necessity of frequency comparison those	
		(Sala 1) (II)	frequency standards over intercontinental distances, NICT is	
			developing a new broadband VLBI observation system composed	
			of a pair of small diameter antennas and large diameter antenna.	
			or a pair or sman diameter antennas and large diameter antenna.	

			m 1
			The observation frequency range of the system is set to be
			compliant with the VGOS system, which is the next generation
			geodetic VLBI observation system promoted by the IVS. We have
			been developing own designed new broadband feed for the
			Kashima 34m antenna. The first prototype of the feed (6-14GHz)
			has been mounted on the antenna and the first light observation
			was successfully done in the beginning of this year. Small
			diameter antennas have been set up for broadband observation
			(3.5-14GHz) and one of it was moved to National Metrology
			Institute of Japan (NMIJ) in Tsukuba in March, and the other
			became ready at NICT in Koganei. Both of these institutes are
			engaged in the development of optical frequency standards, thus
			this is good test-bed for frequency comparison by VLBI. Station
			coordinates of the small antennas are determined via geodetic
			VLBI observations in X-band within 6 mm horizontally and
			15mm vertically. This talk will report these results and current
			development status.
11:30-11:50	Hideki Ujihara	Development of	Two wideband feeds will be presented, they were developed for
(20 min)	(NICT)	Wideband Feed	Kashima 34m antenna and MARBLE(1.6m VLBI antenna) of
			NICT. One will have bandwidth of 2.2GHz-18(or 22GHz),
			however its lower frequency part(2.2-6.4GHz) is still under
			fabrication. On upper frequency part(6.4-15GHz), two feeds was
			set on 34m and tested in some wideband observations, which
			results will be presented by TAKEFUJI or SEKIDO. Another new
			feed was developed specially for Gala-V with 3.2-14.4GHz
			bandwidth, which will be set on 34m and one of MARBLEs in a
			month.
11:50-12:10	Kazuhiro Takefuji	DM measurement by	We carried out a simultaneously observation of the Crab pulsar
(20 min)	(NICT)	GRP-VLBI observation	between Kashima 34 m and Usuda 64 m on Aug 11, 2014. Pulses
			from the Crab pulsar were detected with the both L-band
			receivers and recorded to the digital sampler with a speed of 64
			Msps and 4-bits quantization, After performing the correlation,
			we could obtain about 30 fringes. Normally a dispersion
			measure is measured by single telescope. However we measured
			the dispersion measure of the Crab pulsar from the VLBI.
19:10-19:90	Fujika Watawi	Dovolonment of the	
12:10-12:30	Fujika Watari	Development of the	In radio astronomy on the ground, we receive celestial radio
(20 min)	(Yokohama City	multi frequency phase	waves passing through the Earth's atmosphere. Water vapor in
	Univ.)	referencing method in	the lower atmosphere (troposphere) is problematic in VLBI

		VLBI observation	observations in terms of phase stabilities. The higher the	
			observation frequency is, the bigger its influence becomes,	
			because the excess path delay due to the water vapor is	
			dispersive for the microwave frequency. The phase fluctuation	
			due to the atmosphere has been the most serious problem in	
			VLBI, especially, at high frequencies. To solve this problem, we	
			focus on Multi Frequency Phase Referencing (MFPR) as an	
			effective phase correction method in which higher frequency	
			phases are corrected by lower frequency ones in VLBI	
			observations. In our presentation, we report on MPFR	
			experiment results using the Korean VLBI Network (KVN). First	
			we applied the method to BL Lac and J0244+62 between at	
			22GHz and 43GHz, and between 22GHz and 86GHz, and	
			quantitatively verified the effectivenessIn this case, we can	
			reduce phase errors at 43GHz and 86GHz less than 1 radian.	
			Now, we are going to apply the MFPR to two maser line	
			observations (water and mono-silicate molecular masers at 22	
			and 43 GHz, respectively) of a red super giant, S Per, in order to	
			improve the coherence of SiO maser VLBI phases.	
12:30-12:40	G Division and Linear			
(10 min)	Group Photo in front of Tsukuba-32m			
12:40-13:40	Lunch			
(60 min)		(12:40-1	3:00 Tsukuba-32m Tour)	
		Report Session (Chair: Akihiro Doi)	
13:40-14:00	Noriyuki Kawaguchi	The methanol VLBI	The Tian Ma 65m have just started VLBI observation in S- and	
(20 min)	(SHAO)	observation in the	X-band since February 2014. Here I propose to make methanol	
		EAVN with Tian Ma	observation in C-band. Also I will report the recent developments	
		65m in C-band and	toward 22-GHz VLBI, which aimes at colaborating with Korea	
		developments toward	and Japanese radio telescopes in the east asia VLBI netowork,	
		22-GHz	EAVN. The 65m is very powerful telescope and makes the array	
			sensitivity much higher. Before starting 22-GHz VLBI and	
			higher frequencies, the active surface control system needs to be	
			evaluated after confirming the gravitational deformation of the	
			large dish with the holographic surface measurements on the	
			strong water vaper maser. If my presentation time is enough I	
			hope to present recent scientific outputs from CVN.	
14:00-14:20	Hiroyuki Kaneko	Institute Report:	We report the recent observational studies and instrumental	
(20 min)	(Tsukuba Univ.)	University of Tsukuba	status of K-band of Tsukuba 32m radio telescope. The University	
			The chiveleng	

			of Tsukuba uses Tsukuba 32m telescope for both single-dish and
			VLBI observations under the agreement between the Geospatial
			Information Authority of Japan (GSI) and the University of
			Tsukuba since 2005. We faced troubles, some of which were fixed
			under the cooperation with GSI. After performance evaluation,
			we have resumed K-band observations as a part of station of the
			Japanese VLBI Network (JVN) again and started daily 22 GHz
			VLBI monitor observations of Sgr A*. Our group also started
			X-band VLBI observations of the JVN. From next season, we will
			perform single-dish observations such as NH3 (1, 1) – (6, 6)
			observations toward the Galactic plane.
14:20-14:40	Ryoji Kawabata	Report on the GSI	The Geospatial Information Authority of Japan (GSI) has been
(20 min)	(GSI)	VLBI Activities	operating three VLBI telescopes, i.e. Tsukuba 32-m, Aira 10-m,
			Chichijima 10-m telescopes. In fiscal year 2014 Tsukuba has
			participated in CONT14, a 15-days continuous VLBI campaign,
			and will observe 226 IVS sessions in total. Aira and Chichijima
			will observe 14 regular IVS sessions including Japanese domestic
			sessions (JADE sessions). Tsukuba correlator and analysis center
			process 107 one-hour IVS intensive sessions and five JADE
			sessions in fiscal 2014. Moreover ultra-rapid dUT1/EOP
			measurement has been carried out during CONT14 campaign.
			We are developing a new VLBI telescope, Ishioka VGOS station,
			to take over the global geodetic reference in Japan from Tsukuba
			32-m. The Ishioka-13m telescope will start VLBI observation in
			legacy S/X sessions in fiscal year 2015 and then be fully involved
			in the international VGOS sessions from fiscal year 2017. On the
			other hand, thanks to the development of GNSS analysis
			technique, Japanese local crustal movement is able to be
			monitored by GNSS. Thus GSI will finish VLBI observation in
			Aira and Chichijima by March 2015. Instead we will devote our
			effort to the newly established Asia-Oceania VLBI Group for
			Geodesy and Astrometry in operation, correlation, and analysis.
14:40-15:00	Fujisawa Kenta	Yamaguchi	We have started a project to re-use a 34-m antenna in Yamaguchi
(20 min)	(Yamaguchi Univ.)	Interferometer	called Yamaguchi No.2 Antenna. This antenna is located 110m
			away from Yamaguchi 32-m radio telescope, and we plan to use
			these two antennas as an interferometer, Yamaguchi
			Interferometer (YI). Consideration of science cases, construction
			plan, and the checking the antenna are being carried out. The
			plan, and the checking the antenna are being carried out. The

			la good not out in last VI would be its bink as 10 10 61 T	
			lagest potential of YI would be its high sensitivity of 1mJy	
			detection and long operation time for a few selected scientific	
			themes. Searching and monitoring of Galactic compact radio	
			sources would be one of such themes.	
15:00-15:10			Short Break	
(10 min)		T		
15:10-15:30	Kimihiro Kimura	Report of Osaka	I talk about Osaka prefecture university astrophysics laboratory.	
(20 min)	(Osaka Prefecture	prefecture university		
	Univ.)	astrophysics laboratory		
15:30-15:50	Akihiro Doi	Status Report of	Status Report of Balloon-borne VLBI experiment for feasibility	
(20 min))	(ISAS)	Balloon-borne VLBI	studies of VLBI in stratosphere is presented. The current	
		experiment	status is in the development of gondola systems and	
			ground-based tests of on-board instruments for a test flight.	
15:50-16:10	Osamu Kameya	Activity of the Radio	We will make a review of activity of the Radio Astronomy	
(20 min)	(NAOJ)	Astronomy Frequency	Frequency Subcommittee in Japan. There are many kinds of	
		Subcommittee	artificial interference which may interfere observations of radio	
			astronomy. ITU(International Telecommunication Union) have	
			made frequency allocation for radio astronomy by the ITU-R RA.	
			769. Japanese government (Ministry of general affair) have	
			followed it and made the frequency allocation in Japan. Some	
			frequency bands (exp. Including HI, H2O, NH3, SiO, CO lines,	
			etc) are included it. However, recently, plenty of developments of	
			new devices may make concern about possible new interferences	
			for radio astronomy. Our subcommittee are belong to NAOJ,	
			and works as the center of protection of radio astronomy	
			frequency bands. In order to conduct it, our subcommittee is	
			supported by many subcommittee members who belong to	
			universities and institutes in Japan. We make regular meeting	
			basically once per month and discuss all of the issues on the	
			protection of radio astronomy. We also participate several	
			international meeting held by ITU and work as members of	
			Japanese government. We will review some important topics of	
			the issues in this talk.	
16:10-17:00			Poster Session	
(50 min)	(50 min)			
17:00-18:00				
(60 min)		General Meeting		

Friday, 31 October (Third Day)

Time	Speaker (Affiliation)	Title	Abstract
		Future Planning Session	(Chair: Akiharu Nakagawa)
9:00-9:20	Keitaro Takahashi	SKA and SKA-Japan	Square Kilometer Array (SKA) is the next-generation cm-wave
(20 min)	(Kumamoto Univ.)		radio telescope which will have a sensitivity better than the
			existence telescopes by more than one order. It is expected to
			make a tremendous impact on many fields of astrophysics and
			cosmology, such as cosmic reionization, cosmic magnetism and
			pulsar study. In Japan, a consortium was established with more
			than 100 members and many researchers are studying
			SKA-related topics. In this talk I will review the SKA project,
			science and Japanese activity toward SKA.
9:20-9:40	Kazuhiro Hada	AGN studies with VLBI	High-resolution studies on Active Galactic Nuclei (AGN),
(20 min)	(NAOJ)	in the world	supermassive black holes and their high-energy activities
			(jets/accretion/emission) are one of the most major scientific
			fields with VLBI and astronomy in general. I will present a brief
			overview of the current status/situation on VLBI-AGN study in
			the World in order to help discussing our(Japan) future
			orientation in this field.
9:40-10:00	Toshihiro Omodaka	Southern Hemisphere	Discussion of Southern Hemisphere VERA as a future project
(20 min)	(Kagoshima Univ.)	VERA	candidate.
	Naoteru Goda		
	(NAOJ)		
10:00-10:10			Short Break
(10 min)			Diote Dieak
10:10-10:30	Yasuhiro Murata	Space Mission	We are now need to consider / discuss the possible loadmap of the
(20 min)	(ISAS/JAXA)		radio astronomy space mission. We will introduce discussions
			done in Strategic Headquarters for Space Policy in Japanese
			Government, and discuss about the possible future
			radioastronomy/space VLBI missions.
10:30-10:50	Fumie Tazaki	Black Hole Imaging	The nearest supermassive black hole is in the center of our
(20 min)	(NAOJ)	with EHT and Sparse	galaxy. However, no one has taken a picture of even this black
		Modeling	hole shadow, because of the small angular size of ~ 40
			microarcseconds. Event Horizon Telescope (EHT), which aims to
			image the shadow, uses the Earth-sized VLBI with short
			millimeter wave ($\lambda \sim 1.3$ mm, v ~ 230 GHz). We report the
			current status of EHT and introduce a new imaging technique

			under development with the sparse modeling to achieve the
			super resolusion.
10:50-11:10	Makoto Miyoshi	Towards the study of	We talk about a proposal of Japanese strategy for revealing the
(20 min)	(NAOJ)	black hole using VLBI	vicinity of black holes (their horizon and surrounding relativistic
		in Japan	disk, etc.).
11:10-11:50			D
(40 min)			Discussion
11:50-12:00	Toshihiro Omodaka	Closing Remarks	
(10 min)	(Kagoshima Univ.)		
12:00-13:30			T 1
(90 min)	Lunch		
13:30-16:30	Ishioka Bus Tour		
(180 min)	(GSI -> Ishioka -> Tsukuba Station -> GSI)		

Posters

ID	Name (Affiliation)	Title	Abstract
1	Ryuichi Ichikawa	Evaluation of Processing	Time and frequency transfer using the Global Navigation
	(NICT)	Strategy for Time and	Satellite System (GNSS) code and carrier phase observations is
		Frequency Transfer using	a popular technique for precise clock comparison. GNSS data
		GNSS Precise Point	processing based on precise point positioning (PPP), which is
		Positioning Technique	the standard technique for geodetic applications, allows highly
			precise time and frequency comparisons between remote
			clocks. The PPP least-squares solutions showed improved in
			stability relative to traditional GPS time synchronization
			methods such as the common view GPS, reaching few parts in
			10^-15 at averaging times of one day (Lahaye et al., 2011). In
			the PPP processing, the station position, atmospheric
			propagation delay, and a receiver clock offset are
			simultaneously estimated. In addition, the PPP time transfer
			processing requires precise satellite clocks and orbits, which
			are provided by the International GNSS Service. Thus, to
			perform the near real-time comparison of UTC(k)'s using
			GNSS, evaluation of the uncertainties of the unknown
			parameters and the data quality of satellite clocks and orbits is
			important. The aim of this study is to investigate the suitable
			processing strategy to determine the precise differences
			between remote clocks.
2	Cheulhong Min	Multi-epoch VERA	We carried out multi-epoch phase-referencing VERA (VLBI
2	(SOKENDAI)		
	(SOKENDAI)	observations of SiO	Exploration of Radio Astrometry) observations of v=1,2 J=1-0
		masers toward R Aquarii	SiO masers toward R Aquarii (R Aqr) covering about three
			stellar pulsation periods from Oct. 2011 to Jun. 2014. Overall
			distributions of the SiO masers show clumpy and partial
			ring-like structures dominant in NE (2012) and SE (2013, 14)
			regions and the v=2 J=1-0 SiO maser rings is located closer
			than v=1 J=1-0 SiO maser, consistent with previous VLBI
			observations. The SiO maser regions present contraction and
			expansion with respect to the stellar pulsation phase due to
			shock propagations.
3	Koichiro Doi	Status report of VLBI at	VLBI experiments have been conducted regularly at Syowa
	(NIPR)	Syowa, Antarctica	Station, Antarctica since 1998. Syowa's antenna participated
			in six OHIG sessions (OHIG82-87) in 2013 and fringes were

			obtained for the all sessions, although ion pump of the
			hydrogen maser in Syowa Station was stopped temporarily in
			OHIG87. The faulty maser was replaced by a new one at the
			beginning of 2014. In the presentation, we will make a report of
			the current status of Syowa's antenna.
4	Satoko	VERA Monitoring of OJ	We have carried out frequent monitoring of the BL Lac object
	Sawada-Satoh	287 in 20102013	OJ 287 in the 22-GHz band from 2010 to 2013 using the VLBI
	(NAOJ)		Exploration of Radio Astrometry (VERA) telescope array. The
			22-GHz light curve of OJ 287 clearly shows three flare events:
			in 2011 May, 2011 October, and 2012 March, with an activity
			timescale of < 4 months. The second radio flare event occurred
			at the same time as the gamma-ray flare detected by the Large
			Area Telescope on-board Fermi in 2011 October, while the third
			radio flare seems to precede the gamma-ray flare of 2012
			April. This behavior is different from what was observed
			during the gamma ray flare in 2009. One jet component moved
			outward with an apparent superluminal speed of 11 c from
			2010 November to 2011 November at a position angle of ~160
			degree from North to West, and then it changed direction,
			moving inward with an apparent superluminal speed of 4 c.
			The turning point of the jet motion seemed to occur at the same
			time as the gamma-ray flare in 2011 October. We find a tight
			connection between an apparent inward motion of the
			parsec-scale jet and gamma-ray flaring activity seen from 2011
			November to 2012 August. Higher resolution images with the
			Very Long Baseline Array (VLBA) at 43 GHz allow us to detect
			a new innermost jet component that appeared in 2011 October,
			simultaneously with the gamma-ray flare. The observed
			inward motion could be caused by the new jet component
			unresolved at 22 GHz in the innermost region.
5	Yutaka Hasegawa	Developing 230GHz	GLT-team of ASIAA are forwarding Greenland Telescope (GLT)
	(Osaka Prefecture	Dual-Circular-Polarization	project - building a telescope for mm/submm VLBI at
	Univ.)	& Sideband-separation	Greenland . The beseline between Greenland and ALMA
		Cartridge Receiver for	(Atacama), SMA (Maunakea) is one of the longest line on
		GLT	Earth. Moreover, Greenland is the favorable site for
			radio-observation, as well as Atacama. First goal of GLT
			project is to image Supermassive Black-Hole (1st target:
			M87). To that end, VLBI observation on mm/sub-mm is

			essential . We are in charge of developing 230 GHz dual
			Circular-Polarization Receiver (230GHz CPRx) with
			SIS-Mixer and waveguide-septum type circular-polarizer.
			Developing prototype CPRx is already finished, and sent to
			ASIAA on 25 July 2014. Now ASIAA are preparing to cooling
			test prototype-CPRx on GLT Dewar.
6	Tomoaki Oyama	A progress report on the	The new VLBI observing system (OCTAVE-DAS) and software
	(NAOJ)	development and	correlator system have developed based on the VSI-H and
		performance of	VDIF specifications at NAOJ (National Astronomical
		OCTAVE-DAS	Observatory of Japan). It consists of 1) a high speed 8-Gsps
			3-bit RF direct ADC (OCTAD) enable us to acquire not only
			wide intermediate frequency but also radio frequency up to 50
			GHz and have DBBC functions for VGOS (VLBI Global
			Observing System), 2) a converter (OCTAVIA and OCTAVIA2)
			between one 10 GigE port and four 2 Gbps input and output
			ports conformable to VSI-H, and 3) new recorders (OCTADISK,
			OCTADISK2 and VSREC) at a rate of 4.5 Gbps and above 8
			Gbps and 4) Gbit realtime correlator (OCTACOR) and software
			correlator system (OCTACOR2) using GICO3 was developed by
			NICT. These OCTAVE-DAS are connected via 10 GigE network
			with VDIF and VSI specifications. These components have
			been used for VERA, JVN (Japanese VLBI network) and
			KJJVC(Korea-Japan Joint VLBI Correlator). We report a
			progress of evaluation and results of scientific broad-band(>8
			Gbps) VLBI observations using OCTAVE-DAS and software
			correlator system.
7	Yuki Otsuka	H2O-Maser Single-Dish	We have carried out single-dish observations of H2O masers
	(TEIKYO University	Observations with VERA	around Mira-type variable stars with VERA Mizusawa and
	of Science)		Ogasawara stations in order to find new H2O maser sources.
	·		The observation date is from 2013 December 14 to 2013
			December 19. We report the results of these observations for
			about sixty Miras. Unfortunately we can not find a new
			maser source, these observations are the first step of the
			astronomical research activity in our university.
8	Yuzo Kubose	Radio Continuum and	We have studied physical property and formation process of the
G			
	(Yamaguchi Univ.)	Radio Recombination Line	Galactic Center Lobe (GCL) located in the GC region using
		Observations of the	continuum and H92a radio recombination line (RRL)
		Galactic Center Lobe by	observations 8.3 GHz with Yamaguchi 32-m telescope.

		Yamaguchi 32-m Radio	Observed area for RRL is -1°.00 < 1 < 0°.53 and 0°.10 < b < 0°.90
		Telescope	with sampling grid 0°.067 for l and 0°.050 for b. The observed
			intensity distributions of continuum and RRL both have two
			ridges forming the GCL perpendicular to the galactic plane at
			east and west sides of the galactic center. Although the shapes
			of the continuum and RRL ridges are similar, the spatial
			positions of continuum and RRL ridges are not coincident: RRL
			ridges locate at the inner side of the continuum ridges.
			Line-of-sight velocity of RRL of GCL range within ±10 km s-1
			at entire observed regions. This velocity is far slow compared
			with the Galactic rotation velocity (~220 km s-1). From
			intensity and velocity distribution of RRL, we consider the
			environment of near the GCL, and formation mechanism of the
			GCL.
9	Hikari Horiuchi	Periodic time variation of	We have observed the 6.7 GHz methanol maser in Mon R2
	(Yamaguchi Univ.)	6.7 GHz methanol maser	which is a high-mass star forming region.Previous observation
	(in Mon R2	by Yamaguchi 32m radio telescope showed that the methanol
			maser of this source might show a periodic variability with 22
			to 24 days.In the present study, we are intended to confirm the
			periodicity by daily and long term observation. We report on the
			results of the light curve and spectrum of Mon R2 from May to
			October 2014.
10	Kengo Akutagawa	VERA Observation of	With recent progress in high-energy gamma-ray observations
	(Yamaguchi Univ.)	Gamma-Ray Blazar	by Fermi/LAT and new generation Cherenkov telescopes, the
	(Tamagaom Om II)	DA406	number of gamma-ray sources associated with AGN jet has
			drastically increased compared with the EGRET era. However
			the mechanism and the location of the gamma-ray emission in
			AGN jets are under debate. To obtain any clues for answering
			both of these open questions, we are carrying out VLBI monitor
			for 10 gamma-ray AGNs typically bi-weekly by the Gamma-ray
			Emitting Notable AGN monitoring by Japanese VLBI (GENJI)
			programme. GENJI aims to understand the location of
			gamma-ray emitting region in AGN jets by studying the
			relation of the flux variation between gamma-ray and radio
			(especially VLBI flux and also structural changes). For this
			purpose, we focus on DA406, which is the one of GENJI
			targets, and analyzed the total of 21 epochs data (2012 Dec 10
			- 2013 Dec 24) of DA406 by using AIPS and Difmap software
			- 2013 Dec 24) of DA400 by using AIFS and Diffnap software

	1	Γ	<u> </u>
			packages. In our data analysis, we obtained three components
			(named as C0 – C2) by two-dimensional Gaussian fitting
			procedure in Difmap, and then we measured the position of C1
			and C2 with respect to the C0. We here assumed that C0 is the
			radio core. As a result, we found that not only the radio core
			represented the flux increase within a year, but also C1 and C2
			moved outward from the radio core at apparent velocities of
			6.05 + / -0.62 c. $1.47 + / -1.23$ c, respectively. Now we are discussing
			the relation between gamma-ray variation and our results.
11	Seina Kimura	High sensitivity VLBI	Supermassive black holes (hereafter SMBHs) exist in the
	(Yamaguchi Univ.)	observation for black hole	center of many galaxies, and they are observed as active
		candidates near Sgr A *	galactic nuclei. The formation process of the SMBHs, however,
			remains unclear at present. A possible formation model of the
			SMBHs in the galactic center is BHs merging by collision and
			merging of small galaxies. Many small galaxies have been
			merged and absorbed into our galaxy in the past. Such galaxies
			had BHs in their center. If BHs evolve by merger, there is a
			possibility that relatively large BHs wander in the vicinity of
			the Sgr A*. The purpose of the study is to find BH candidates
			that have character like Sgr A*.We have performed VLBI
			observation in three baselines Yamaguchi, Tsukuba and
			Hitachi for elected five compact radio sources.
12	Sho Kanazawa	6.7 GHz Methanol Maser	Study on the area beyond the Galactic Center is poor. Since
	(Yamaguchi Univ.)	Survey in Outer Galaxy	objects in the area are far from the sun, they are difficult to be
		beyond the Galactic	observed in terms of angular size and flux density. The area
		Center	beyond the Galactic Center has not been well considered in the
			studies of the star formation and Galactic astronomy. Recently,
			however, new spiral arm was found in the Galactic First
			Quadrant beyond the Outer Arm, and it is called as Outer
			Scutum - Centaurus Arm. HII regions and molecular clouds
			were also found in the arm. Only a few 6.7 GHz methanol
			,
			maser sources have been found in the Outer Galaxy beyond
			Galactic Center region. We have made a 6.7 GHz methanol
			maser survey toward Outer Galaxy beyond the Galactic
			Center, Outer Scutum - Centaurus Arm in the range of 350° < 1
			< 25°, for determining the distance to Outer Scutum -
			Centaurus Arm using Yamaguchi 32 m telescope and VERA. As
			a result, 11 methanol maser sources were detected, of which

			1, m 1, 1
			one was new detection. The detected sources are probably in
			the inner Galaxy because of their line-of-sight velocities. Bright
			sources like W3(OH) was not found in this survey, and it is
			likely bright source does not exist in the Outer Scutum -
			Centaurus Arm.
13	Yoshitaka Fujinaga	The survey for new AGN	We report on the results of survey for new gamma-ray AGN
	(Yamaguchi Univ.)	candidates within the field	candidates by using Japanese VLBI Network. Aims of our
		of Fermi unassociated	survey are 1) verification of Blazar Sequence with taking
		gamma-ray sources	account of faint blazars and 2) discovery of new types of AGN
			with gamma-ray emission. To achieve our purpose, we
			observed all NVSS and FIRST sources located within the
			positional uncertainty of unassociated gamma-ray sources
			listed in Fermi/LAT 2nd catalog. As a result of our JVN
			observations of 845 radio sources, we detected 29 VLBI
			sources. In our poster, we will show not only the results of
			estimations of types of these sources but also several
			correlation diagrams of them.
14	Yusuke Miyamoto	Observations of ammonia	We present the results of ammonia observations toward the
	(Ibaraki Univ.)	toward the center of the	center of the Seyfert 2 galaxy NGC 3079. The NH3 (J,K)=(1,1)
		Sefert 2 galaxy NGC 3079	and (2,2) inversion lines were detected in absorption with the
			Tsukuba 32-m telescope, and the NH3(1,1) through (6,6) lines
			with the VLA, although the profile of NH3(3,3) was in emission
			in contrast to the other transitions. All ammonia absorption
			lines have two distinct velocity components; one is at the
			systemic velocity and the other is blueshifted, and both
			components are aligned along the nuclear jets. For the
			systemic components, the relatively low temperature gas is
			extended more than the high temperature gas. The blueshifted
			NH3(3,3) emission can be regarded as ammonia masers
			associated with shocks by strong winds probably from newly
			formed massive stars or supernova explosions in dense clouds
			in the nuclear megamaser disk. Using para-NH3(1,1), (2,2),
			(4,4) and (5,5) lines with VLA, we derived the rotational
			temperature Trot = 120 ± 12 K and 157 ± 19 K for the systemic
			and blueshifted components, respectively. The rotational
			temperatures are higher than temperatures in other galaxies
			already reported. In addition, the ammonia abundance in the
			nuclear region of NGC 3079 is higher than that of the other

			1 . 701 14 111 11 1
			galaxies. These results would be caused by mechanical heating
			due to the nuclear jets. To clarify the reason, we have a plan to
			observe the nuclear region with JVN.
15	Hiromu Nakamura	Long-term flux variation	It is known that 6.7 GHz methanol maser in high-mass
	(Yamaguchi Univ.)	of 6.7 GHz methanol	star-forming region shows the flux variation. The methanol
		maser in high-mass star	maser is excited by IR radiation, and the variation of the maser
		forming region	is caused by the variability of the central source. However, the
			maser of the Mon R2 can not be simply explained by IR
			excitation of the circumstellar gas. Mon R2 shows significant
			flux variation (\sim 180Jy) as well as the variation of its line
			shape. The maser spot distribution is perpendicularly to the
			radial direction from the central star. The variability and
			distribution suggest that the maser trace the shock region
			caused by outflows from the central star. Therefore the
			excitation mechanism of the 6.7 GHz methanol maser in Mon
			R2 is still unclear. We plan to find sources like Mon R2 and to
			reveal the excitation mechanism by comparing such as nature
			of the flux variation and spatial distribution in many sources.
			Currently, we are looking for candidate sources that show the
			behavior of the flux variation similar to Mon R2 based on the
			data of monitoring of the long-term flux variation over 100
			sources in Yamaguchi 32m radio telescope (2004~2007,2010)
			and Torun1999(szymczak et al.2000).
16	Daiki Hirano	Internal proper motion of	We have observed the spatial distributions of the 6.7 GHz
	(Yamaguchi Univ.)	6.7GHz methanol maser in	methanol maser in 38 high mass star forming regions using
		high mass star forming	Very Long Baseline Interferometry (VLBI) to study the gas
		regions	motion around high mass young stellar objects. The
			morphology of the distribution of the maser were divided into
			five spatial types (Linear, Arched, Elliptical, Paired, Complex).
			The next step of this study is to derive the proper motions of
			these sources. Proper motion of rotation and infalling have
			been reported on an Elliptical source (CepA; Sugiyama et al.
			2014). In this work, we report on the proper motions of the
			maser spots of four morphological types (Linear, Elliptical,
			Paired, Complex).
17	TZ 1 TT 1:	T. 1 2	
17	Kyonosuke Hayashi	Internal proper motion of	High-mass stars play a prominent role in Galactic evolution in
	(Yamaguchi Univ.)	high-mass star formation	terms of induction of star formation and generation of heavy
		region G9.61+0.19	elements. The structure and dynamics of accretion disks

	1		
			around high-mass young stellar objects(HMYSOs) have been
			observed by sub-millimeter and infrared bands, and it has been
			recognized that high-mass star formation process is similar to
			that of low-mass stars. However, the detail of the accretion
			process is still unknown. We have made VLBI observations of
			6.7 GHz methanol maser emitted from sites of high-mass star
			formation because the maser is thought to be a good tool for
			tracing the gas around HMYSOs. We report the result of
			internal proper motion of maser spots of G9.61+0.19 whose
			spatial morphology is linear. We also perform the simulation of
			the internal proper motion of maser spots of linear morphology,
			and compare with the VLBI result and simulation.
18	Yoshinori Yonekura	Present status of the	In 2013-2014 season, 6-9 GHz cooled receiver was installed on
	(Ibaraki Univ.)	Ibaraki station (Hitachi	the Hitachi antenna all year round. For the Takahagi antenna,
		and Takahagi 32-m	22 GHz cooled receiver was installed for about 9 months except
		antennas)	summer season, and 6-9 GHz cooled receiver was installed for
			the rest 3 months. VLBI observations were carried out in 6.7,
			8.4, and 22 GHz for about 200 hours. About half of the
			observations, the DIR-1000 magnetic tape recording system
			(128Mbps = 32 Msampling/s * 2 ch * 2 bits) was used, and the
			remaining half, the OCTADISK HDD recoeding system (2Gbps
			= 1024 Msampling/s * 1 ch * 2 bits) was used. Short baseline
			VLBI observations to monitor the flux density of Sgr A* with
			Takahagi-32m, Mizusawa-10m, and Gifu-11m on 22 GHz using
			IP-VLBI system (K5/VSSP32) were excecuted for 2 hours every
			day, which ammount to the total observing time of about 570
			hours from Feb. 2013 to Aug. 2014. Single dish observations to
			monitor the flux density of about 400 methanol masers in 6.7
			GHz were carried out for 10 hours every day. The two-element
			array using Hitachi and Takahagi antennas are now in the
			commissioning phase.
19	Tomoharu Kurayama	Parallax measurements of	We have observed a star-forming region GPSR 034.257+0.155
	(TEIKYO University	a star-forming region	with VERA in order to measure its annual parallax. The
	of Science)	GPSR 034.257+0.155	tentative value of annual parallax is 0.41 +/- 0.09 mas, which
			corresponds to the distance of 2.44/+0.69/-0.44 kpc. The
			parallax varies from 0.319 mas to 0.510 mas by changing the
			data points using the parallax fitting. Its kinematic distance
			is 3.7 kpc, which corresponds to the parallax of 0.27 mas. The
			110 or ape, which corresponds to the paramax of 0.27 mas. The

			amellest neveller is consistent with the line of the
			smallest parallax is consistent with the kinematic distance.
			We also try to develop a new method for the determination of
			the position at each epoch, using the sidelobe peaks of the dirty
			images.
20	Masachika Kijima	Long light curves of 17	Fermi's all-sky monitoring program in gamma-ray band
	(Tokushima Univ.)	never-observed sources in	requires new radio observations with high time-sampling and
		southern hemisphere	all-sky monitoring. I propose the application of geodetic VLBI
		using geodetic VLBI	to obtain light curves in radio band for AGN science. In this
			method, the problem is how to calibrate visibility amplitude
			and source structure to estimate total flux. Kijima+12 focused
			on amplitude calibration and drew 800 light curves with
			relative error of 15%. In my presentation, light curves of 17
			southern sources those have not been observed with single dish
			observations at 8 GHz are prepared. Using these curves,
			physical parameters are estimated and compared with
			previous research. This application will support not only
			observational requirements in astronomy, but also future plan
			in geodesy (VLBI2010).
21	Nozomi Okada	Development of 22 GHz	We are developing a new 22 GHz band balloon borne VLBI
	(Osaka Prefecture	band balloon borne VLBI	telescope. This development aims at detecting the VLBI fringe
	Univ.)	telescope	pattern by the telescope lorded on a flying object, and at
			gaining a VLBI observation site in sub-mm-wave bands. We
			already designed optical system and receiver's system. In our
			optical design, classical Cassegrain design is chosen, and
			edge-level at sub-reflector is -12 dB. Also we choose a
			corrugated horn, which have smaller sidelobes and cross
			polarization than the usual conical horn. In our receiver's
			system, RF signal is converted into electric signal by the
			corrugated horn, divided into circularly polarized wave by a
			polarizer, amplified by two amplifiers, and down-converted into
			0.5-2.5 GHz signal by mixers. Now, we are measuring
			receiver's performance in ordinary temperature and normal
			pressure, and preparing measuring system of receiver's
			performance in low temperature and low pressure; these are a
			little lower than stratospheric temperature and pressure. In
			this poster, we show about these features.
22	Daisuke Sakai	Absolute proper motions	Sgr D HII region is one of the radio source toward the Galactic
44			
	(Tokyo Univ./NAOJ)	measurement of Sgr D HII	Center region. The galactic longitude of this source is

		region with VERA	l=1.14deg. Line-of-sight velocity of thermal molecular line
		Togoti with Aller	associated with this source is -16 km/s, which is prohibited in
			flat rotation at positive galactic longitude. Narrowness of the
			molecular line width(~4-5 km/s) seems to avoid this source
			locating in Galactic Center, because typical line width in
			Galactic Center region is 20-30 km/s. These facts make
			determination of distance for this source difficult. We have
			conducted astrometric observations for 22 GHz water maser
			source associated with Sgr D HII region with VERA. We
			obtained absolute proper motion for this source, and the
			measured motion implies this source locating in near side
			relative to the Galactic Center. By considering the measured
			absolute proper motion, we constrained the location of this
			source on near 3 kpc arm or near central molecular zone(CMZ).
23	Yui Sugiura	Bursting Activity in a	We report on our observational results of single dish
	(Yamaguchi Univ.)	High-Mass-Star-Formng	monitoring observations of the 6.7 GHz methanol maser
		Region G33.641-0.228	emission in a high mass star-forming region G33.641-0.228.
		Observed with the 6.7	Previous observations using the Yamaguchi 32-m radio
		GHz Methanol Maser	telescope have revealed that the maser shows the bursting
			activity (the rapidly rise of flux). Since the timescale of bursts
			is quite short less than a day, the details of the variation of the
			burst has been unclear. This study aims to reveal the
			variations by high frequent monitoring observations. As a
			result of these observations, we have detected three bursts.
			One of the spectral components of this maser in this source
			changed its flux density ten times that of the previous day, and
			its decaying phase, the variation was not smooth, but showed
			very rapid rise and fall repeatedly in eight days.
24	Kazuya Hachisuka	Time Variation of 6.7 GHz	We are performing the East Asian VLBI Network (EAVN)
	(Yamaguchi Univ.)	methanol maser features	observations towards 6.7 GHz methanol maser sources which
	(Tumagaom Cmm)	medianor maser readares	trace gases around massive protostar. The past VLBI
			observations (includes our EAVN observations) have detected
			internal proper motion of 6.7 GHz methanol maser, however it
			is hard to detect because it is too small to detect. Moreover the
			structure of maser (maser feature) changes within few years,
			this change is also the reason for difficulty of detection. Here
			we report the time variation of maser features which observed
			by EAVN. This is very preliminary result.

25	Kazuya Hachisuka	Japan VLBI Consortium	Japan VLBI Consortium (JVC) established in 1990 and JVC
	(Yamaguchi Univ.)	Symposium and Japanese	annual symposium (or related workshop) are held since 1991.
		VLBI Network since 1998	On the other hand, current Japanese VLBI Network (JVN)
			started to operation since 2004, especially Japanese
			universities operate their own radio telescope and educate
			students. One decade later, Japanese VLBI community has
			extended and many students study radio astronomy/technology
			in the universities. Because the 10th anniversary of JVN in
			this year, the JVN should consider own future. Sometimes the
			history helps to consider future, I summarize the past JVC
			symposium and then I would like to show activities of JVN and
			Japanese universities.
26	Fuyuhiko Kikuchi	Performance evaluation of	VLBI is one of the effective methods for investigating the lunar
	(NAOJ)	wide-band and multi-beam	and planetary internal structure. VLBI measures a difference
		receiver system	in an arrival time of a signal transmitted from a spacecraft
			source to two ground stations. This measurement gives
			plane-of-sky position information of spacecraft in contrast to
			2-way Doppler measurement that gives line-of-sight position
			information. The combination of VLBI with Doppler is effective
			for precise position determination of the spacecraft. The
			gravity field and rotation state of the planet can be estimated
			from the position of the orbiter and lander. We have developed
			a wide-band and multi-beam receiver system for future
			exploration. This presentation shows the designing of a Vivaldi
			antenna and its performances especially for return loss, beam
			pattern and receiver noise temperature.
27	Akiharu Nakagawa	Astrometric observation of	Long period variables shows high mass-ross and plays an
	(Kagoshima Univ.)	'very' long peirod variabes	important role in chemical enrichment of the universe. They
			are also used as a standard candles in distance estimation of
			celestial objects. Though astrometric observations of long
			period variables revealed their period-luminosity relation,
			especially for Mira type variables (van Leeuwen et al.1997,
			Whitelock et al. 2008, Nakagawa et al. 2014), the relation for
			stars with period longer than ~1000 days are not studied in the
			Milky Way Galaxy. Astrometric observations of these kind of
			sources are little or nothing. We started water maser survey
			toward potential sources of 'very' long period variables. Optical
			monitoring are also considered using 1m telescope at

			Kagoshima.
28	Hiroshi Imai	OH maser exploration in	The SPLASH (Southern Parkes Large Area Survey in Hydoxyl)
	(Kagoshima Univ.)	the first-year SPLASH	is an unbiased survey of hydroxyl (OH) (1612, 1665, 1667, 1720
		observations	MHz) thermal and maser lines in a large area along the
			Galactic plane using the Parkes 64 m telescope. The first
			SPLASH paper was published in Dawson et al. (2014, MNRAS,
			439, 1596) and described the results of a survey in 1/3 of the
			whole survey area, including the basic properties of the
			reduced data and detected lines in forms of emission,
			absorption, and maser. In our poster, we focus on the 1612 \ensuremath{MHz}
			OH maser sources detected in the first published survey data.
			There are approximately 130 maser sources identified. We
			found that the distribution of the maser on the sky is
			attributed to two Gaussian components, the Galactic thin and
			thick disks. We estimated that the total number of the maser
			sources that will be detected with the Parkes telescope
			(brighter than 0.5 Jy) will be about 4700. Taking into account
			the existence of a few sources that were not detected in Dawson
			et al. but found in the previous survey conducted 19 years ago,
			we estimated the duration of OH maser activity to be 800 years
			or shorter. This inconsistent with that of a stellar super wind
			(1000–3000 years). Further investigation is necessary using
			the whole data of SPLASH and those in the follow-up
			observations using the Australia Telescope Compact Array
			(ATCA).
29	Hiroshi Imai	KaVA Large Programs of	We will present our activities linking to planning of possible
	(Kagoshima Univ.)	Circumstellar Masers	forms of large programs to study on circumstellar H2O and SiO $$
			maser sources with KaVA (KVN and VERA Array). A great
			advantage of KaVA for the stellar maser observations is the
			combination of the unique capability of the multi-frequency
			phase referencing technique and the dual-beam astrometry
			using KVN and VERA, respectively, with a KaVA's relative
			dense antenna configuration. We have demonstrated this
			advantage through the test observations conducted by the
			KaVA Evolved Stars Sub-working Group from 2012 March to
			2014 March. Snapshot KaVA imaging is confirmed to be
			possible in integration time of 0.5 hour at the 22 GHz band and
			1.0 hour at the 43 GHz band in typical cases. This implies that

			<u> </u>
			large snapshot imaging surveys towards many H2O and SiO
			stellar masers are possible within a reasonable machine time
			(e.g., scans on ~100 masers within ~200 hours). This
			possibility enables us to select the maser sources, which are
			suitable for future long-term (~10 years) intensive
			(biweekly-monthly) monitoring observations, from ~400
			potential target candidates selected from dual-frequency band
			(K-/Q-bands) KVN single-dish observations. The output of the
			survey programs will be used for statistical analysis of the
			structures of individual stellar maser clumps and the
			spatio-kinematical structures of circumstellar envelopes with
			accelerating outflows. The combination of astrometry in
			milliarcsecond level and the multi-phase referencing technique
			yields not only trigonometric parallax distances to the masers
			but also precise position reference for registration of different
			maser lines. The accuracy of the map registration affects
			interpretation of the excitation mechanism of the SiO maser
			lines and the origin of the variety of the maser actions, which
			are expected to reflect periodic behaviors of the circumstellar
			envelope with stellar pulsation. Currently we are checking the
			technical feasibility of KaVA operations for this combination.
			After this feasibility test, the long-term monitoring campaign
			program will run as one of KaVA's Large Programs.
30	Kenta Fujisawa	Activity Report of	The activity report of Yamaguchi University is presented
	(Yamaguchi Univ.)	Yamaguchi University	
31	Kenta Fujisawa	VLBI Operation	The report of VLBI Operation Committee and Program
	(Yamaguchi	Committee and Program	Committee is presented.
	University)	Committee	
32	Yasuhiro Murata	Status of JAXA VLBI	Introduce current status of use of JAXA antenna for VLBI.
	(JAXA)	stations.	Currently, we can use Usuda 64m and Uchinoura 34m.
			Recentry we made upgrade of the X band reciever and
			recording system. We also consider the single dish use of VLBI
			and discuss about the upgrade plan. Uchinoura 34m used to
			use for VLBI, and we also considering the possibility to use
			Usuda-10m as a 22 GHz VLBI station, which used to use for
			VSOP-1 (HALCA) mission.
			VBOL I (HALOA) IIIISSIOII.