Annual meeting of Japanese VLBI Consortium October 29-31, 2014@Tsukuba

The methanol VLBI observation in the EAVN with Tian Ma 65m in C-band (and developments toward 22-GHz) N. Kawaguchi Shanghai Observatory

Chinese Academy of Sciences

Tian Ma 65-m Telescope

Photo by Kawaguchi at a time of FT in May 27.

Feed Horns of 65m

C-band Cooled Receiver

C-band Receiver Performance

65m C-band Receiver

Telescope Sensitivity

EMI

The Methanol frequency band, 6.7GHz is quiet enough.

65-m Backend

Single Dish DIBAS (For Pulsar and Spectral line) DRM (For Continuum) VLBI CDAS + Mark5B DBBC2 + Mark5B

From HP of SHAO

Methanol Observations with the Sheshan 25m

Shanghai 25m participated in two sessions in the EAVN observation.

Proper Motion of the 6.7 GHz Methanol Maser in G 006.79-00.25

Epoch	Date and Time	Telescopes [*]	1 σ	Synthesized beam		$N_{\rm spot}$
				$ heta_{ m maj} imes heta_{ m min}$	PA	
	(yyyy/mm/dd, UT)		$(Jy \text{ beam}^{-1})$	$(\max \times \max)$	(°)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
1	2010/08/29, 08:50-13:30	M, R, O, I, H, S	0.046	7.4×2.9	+3	92
2	2011/10/05, 06:20-11:10	M, R, O, I, Y, H	0.039	7.2×4.0	-9	106
3	2012/09/23, 07:00-11:50	M, R, O, I, Y, H, S	0.029	7.7×3.4	-4	118

Table 1. Parameters of VLBI observations using the EAVN for G 006.79-00.25.

Notes. Column 1: epoch number; Col. 2: observational year/month/day, and universal time; Col. 3: telescopes used; Col. 4: image rms noise in a line-free channel obtained with total on-source time of 1.0 hr; Cols. 5–6: FWHM of major and minor axes, and position angle of synthesized beam made with natural weighting; Col. 7: number of detected maser spots.

* Telescope code — M: VERA-Mizusawa, R: VERA-Iriki, O: VERA-Ogasawara, I: VERA-Ishigaki, Y: Yamaguchi, H: Hitachi, S: Shanghai.

Sugiyama et al. (submitted in Sep.9, 2014)

The 6.7 GHz methanol masers in G 006.79+00.25

Sugiyama et al. (submitted in Sep.9, 2014)

The large dish telescope to get better array sensitivity

- The Tian Ma 65m telescope started the science operation in 2013.
- The change in the sensitivity due to gravitational deformation of the large main dish is a subject under concern to be carefully calibrated.

Pseudo Closure Amplitude

$$PCA_j = \left|\frac{\rho_{ij}\rho_{jk}}{\rho_{ik}}\right| = \frac{\left(S_0\sqrt{S_iS_j}\right)\left(S_0\sqrt{S_jS_k}\right)}{\left(S_0\sqrt{S_iS_k}\right)} = S_0S_j$$

 $\begin{array}{ll} \rho_{ij}, \rho_{jk}, \rho_{ik} : complex \ visivilities \ of \ the \ ij \ jk \ and \ ik \ baselines \\ S_0 & : \ Source \ Flux \ Intensity, \\ S_{i.i.k} & : \ Telescope \ Sensitivity \end{array}$

Sharp triangular baselines

j-th station

$$PCA_j = \left|\frac{\rho_{ij}\rho_{jk}}{\rho_{ik}}\right| = \frac{\left(S_0\sqrt{S_iS_j}\right)\left(S_0\sqrt{S_jS_k}\right)}{\left(S_0\sqrt{S_iS_k}\right)} = S_0S_j$$

It doesn't matter if sensitivities of the i-th and k-th stations largely changes with elevation angles.

For 'imaging' the jth station works as one end of a single baseline.

Necessary to make calibration for the jth station as usual. k-th station

i-th station

Importance of a short baseline

In the Sheshan campus of SHAO, the large dish and the medium size telescopes are possible to operate in the same time.

X-band observation (PI, An Tao) on M81 with three stations of CVN

Tian Ma 65m

Pseudo Closure Analysis and Sensitivity of Ur25m

$$SEFD(Ur) = \frac{q \cdot S(M81)\sqrt{2BT}}{PCA(SNR, Ur)} = \frac{0.86 \times 0.17 \times (1.07 \times 10^5)}{(14.5 \pm 0.9)} = \mathbf{1078} \pm \mathbf{70} [Jy]$$

(The SEFD(Sh) is 1050 Jy obtained in the EAVN fringe test in May, 2014)

Tow point source model

Evaluation of good-of-fitness

- VLBI data correlated by Jiang Wu was fitted to a two-point component model.
- A linear change of the sensitivity is removed.

Fitting to a two-point component model

Residual distribution and the χ^2 test

A fine good-of-fitness was confirmed with the χ_{ν}^2/ν , almost unity that does mean the two-point component model Is valid and the derived position angle of the Jet direction is reliable enough.

Position Angle of Jet observed in X-band

- We can give a twopoint-component model to the change of PCA with the correlation coefficient of 99% as seen in the previous slide.
- We got a peak PCA at the position angle of 76 degree.
- The Jet component is located at almost perpendicular to the galactic plane.

PA change in time in a 8GHz band

Is the position angle changing with frequency?

Our observation confirms this in X-band.

Concluding Remarks

- The receiving system of the Tian Ma 65-m and the Sheshan 25-m telescopes are presented.
- Methanol maser observations on a sharp triangular baseline are proposed.
- The Tian Ma 65m works for the large sensitivity.
- The Sheshan 25m works for assisting the precise calibration on a large sensitivity change probably suffered on a large dish.

SUPPLEMENT

Data

C-band Receiver Performance (2)

65m C-band Receiver

