VLBI Consortium@Tsukuba 29-31 Oct. 2014

Development Status of Broadband VLBI System (Gala-V) -(II)

M.Sekido⁽¹⁾, K.Takefuji⁽¹⁾, H.Ujihara⁽¹⁾, M.Tsutsumi⁽¹⁾, Y.Miyauchi⁽¹⁾,
S.Hasegawa⁽¹⁾, T.Kondo⁽¹⁾, E.Kawai⁽¹⁾, R.Ichikawa⁽¹⁾, H.Takiguchi⁽¹⁾,
T.Goto⁽¹⁾, K.Watabe⁽²⁾, T.Suzuyama⁽²⁾, Y.Koyama⁽¹⁾
1) National Institute of Information and Communications Technology
2) National Metrology Institute of Japan

Contents of presentation

- Frequency transfer via VLBI
- Gala-V system Development
 - Broadband observation
 - Marble1,2 (1.5m,1.6m) : 3-15GHz
 - Kashima34m : 6-14GHz
 - Compliant with VGOS (Next generation Global VLBI system)
- Installation to NMIJ(Tsukuba) and NICT(Koganei)
 - First Geodetic observation after installation
 - Principle proving

Precise Frequency Transfer over intercontinental distances

GNSS-Satellit

GPS Station X

GNSS

GPS StationY

Space Technologies for Distant Frequency Comparison

- GNSS(Common view, PPP)
- Two way Satellite Time and Frequency Transfer(TWSTFT)

1e-10

VLBI

Comparison of TWSTFT, GPS, VLBI Exp. on 19-22 Feb. 2012

Comparison of Frequency Transfer Techniques Experiment on 100 km baseline

Comparison of TWSTFT, GPS, VLBI Exp. on 19-22 Feb. 2012

Comparison of Frequency Transfer Techniqu Experiment on 100 km baseline

Precision of VLBI

Antenna Diameter	RMS residual
11m-11m	~ 30 psec.
32m-11m	~ 20 psec.
32m-1.5m	~ 30 psec.

Major error sources

- 1. Error of atmospheric delay estimat
- 2. Thermal noise $\propto 1/(SNR \times BW)$

MBL2(1.5m) Tsukuba 32m Koganei Example of VLBI analysis Delay residual plot \$13FEB03XC <2> TSUKUB32/MARBLE2 Delay GRPONL (psec) Tsukuba 32m – MBL2(1,5m) 200 100 ٥ -100-200 -300 0 5 10 15

Time (hours)

Developments of New Technologies for the Gala-V system

Target Precision: 30 ps -> 7 ps

Broadband observation Broadband Feed Design

Image of `Iguana' feed

Direct RF Sampling

High speed sampler (16GHz) GALAS

Bandwidth Synthesis for

10 times wider frequency range

Fine Delay resolution without ambiguity.
 1GHz

Delay [nsec]

VLBI2010 Global Observing System VGOS(Next generation Geodetic VLBI)

- Radio Frequency: 2-14GHz
- Antenna Slew Speed: (>3deg/sec)
- Target Accuracy: 1mm

RFI 調査 2-18GHz at Tokyo,Kashima, and Tsukuba

1.5m compact antenna

Kashima 34m antenna

- VLBI2010 仕様に 部分準拠
 - 1 GHz x 4 band 3-15GHz Frequency Range

"Iguana" Feed

Requirement:

• 35 deg. Beam width over the wide frequency range.

Wideband prototype feed designed by Dr. Ujihara has been installed to Kashima 34m with room temp. LNA at the end of 2013.

This feed has sensitivity at 6.4-14GHz range at present. Upgraded feed with 2.2-18GHz Freq. range is intended.

Image of `Iguana' wideband feed

Methanol Maser

Simultaneous Observation of Methanol Maser line at 6.7GHz and 12.2GHz on W3OH for test observation (first light) on 16 Jan.2014.

Date: 17.JAN.2014 15:58:51

Date: 17.JAN.2014 15:37:49

Kas34-Mbl1 (12GHz:512MHz) 3C273B

16

Kas34-Mbl1 W3OH(12.181GHz)

17

First Fringes with VERA (6.7GHz)

Observation on 1st-2nd Oct. 2014

KASHIM34

ISHIGAKI

3C84

OGASA20

3C84

deq

ocn :	2014/2/4 12:50:00
ation-1:	MIZNAO20
ation-2:	KASHIM34
urce :	3C84
ngth :	10.000000[sec]
mpling :	1024000000[sps]
equency:	+6408.000000[MHz]
ak Amp :	54394.542049[%]
ak Phs :	-170.898469[deg]
lay :	+0.000397[spl]
te :	+0.001526[mHz]
R :	313.880318

Data Acquisition: 1GHz x 4 Ch

Two Approaches

1. Analog Down Converter + "ADS3000+"

- Digital BBC function for legacy mode observation.
- 2. Direct Sampler "GALAS"
 - Digital Down Conversion function for any frequency by 1MHz step.

RF-Box of MARBLE small antenna

Monitoring at Observation Room (3-15GHz). RBW=5kHz

Spectrum		Save/Recall
Ref Level -20.00 dBm		Save
-30 dBm		Recall
-40 dBm		Startup Recall •
		ScreenShot
n An an	han arrith the	Export •
		Import •
		File Manager •
Start 3.0 GHz Sto	p 15.0 GHz	
Measuring		23.10.2013 18:12:07

Date: 23.0CT.2013 18:12:07

Observation Frequency Band & Ionosphere Delay Contribution

Ready for Observation

<section-header>

34m Antenna NICT Kashima

1.5mAntenna NICT Koganei

MARBLE2

1.6m Antenna NMIJ Tsukuba

MARBLE1

1.6m/1.5m and 34m VLBI antennas have been installed for T&F.

NMIJ

Map data ©2014 Google

NICT/Kashima

NJCT/Koganei

Geodetic VLBI Experiments on Apr. 22, May 14, May30 to fix station coordinates.

Kashima

Station Coordinates Repeatability: Horizontal < 6mm Vertical < 15mm Delay Residual WRMS is about 35 psec@30sec.

Geodetic VLBI Observation

- Stations:
 - Kashima(34m), Tsukuba(1.6m), Koganei(1.5m)
- Radio Frequency:
 - X-band: 8080-9080MHz, Bandwidth: 1GHz
- Experiments:
 - Gx14112: 2014. Apr. 22-23 24 hours.
 - Gx14134: 2014. May 14-15 24 hours.
 - GX14150: 2014. May 30-31 24 hours.

Geodetic Observation in April-May

MARBLE1(NMIJ, Tsukuba)

MARBLE2(NICT,Koganei)

Clock Estimation

- Stations:
 - Kashima(34m), Tsukuba(1.6m), Koganei(1.5m)
- Experiments:
 - Gx14112: 2014. Apr. 22-23 24 hours.
 - Gx14134: 2014. May 14-15 24 hours.
 - GX14150: 2014. May 30-31 24 hours.

Analysis:

• OA,OB->AB baseline data conversion

•
$$\tau_{21} = \tau_{31} - \tau_{32} - \dot{\tau}_{21} \times \tau_{32}$$

Time comparison Analysis

Clock Estimation from VLBI data

Nest steps to be done

- Long span VLBI observations for frequency comparison
- Broadband Observations
 - Domestic: Kashima34, Marble1, Marble2
 - Geodetic, Time transfer experiments
 - International: We are planning to perform intercontinental broadband observation with MIT/Haystack.
- Target precision:

Acknowledgements

Broadband Feed Development is supported by NAOJ-fund(Prof. Fujisawa et al.)
Gala-V Experiments is supported by

NMIJ: (Dr.Watabe, Dr.Amemiya, Dr.Suzuyama)

Thank you for Attention!

AB Baseline Data

