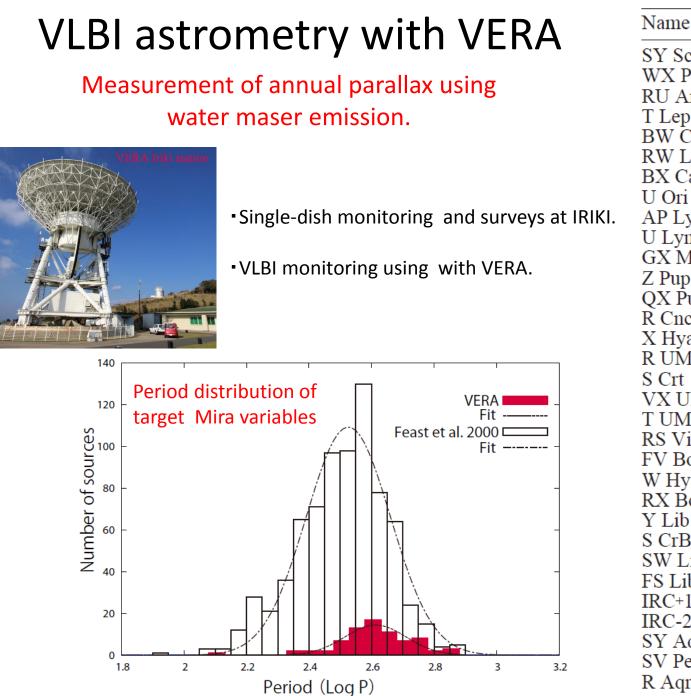

Astrometric observation of 'very' long period variables


Akiharu Nakagawa (Kagoshima university) nakagawa@sci.kagoshima-u.ac.jp

Long period variables shows high mass-ross and plays an important role in chemical enrichment of the universe. They are also used as a standard candles in distance estimation of celestial objects.

Though astrometric observations of long period variables revealed their period-luminosity relation especially for Mira type variables (van Leeuwen et al.1997, Whitelock et al. 2008, Nakagawa et al. 2014), the relation for stars with period longer than ~1000 days are not studied in the Milky Way Galaxy. Astrometric observations of these kind of sources are little or nothing. We started water maser survey toward potential sources of 'very' long period variables. Optical monitoring are also considered using 1m telescope at Kagoshima.

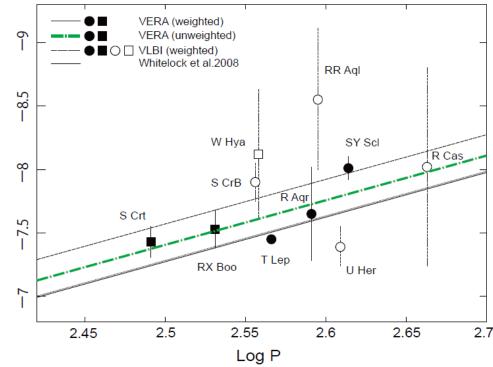
Current purpose:Determination of Period-LuminosityRelation (PLR) of Mira type variables
位置天文に基づいたミラ型変光星の周期光度関係の確立

Name	Р	LogP	Туре
SY Scl	415	2.62	Mira
WX Psc		2.82	
RU Ari	354	2.55	SR
T Lep	368	2.57	Mira
BW Cam			Mira
RW Lep	150	2.18	SR
BX Cam	454	2.66	Mira
U Ori	368		Mira
AP Lyn	450		Mira
U Lyn GX Mon	434		Mira
GX Mon	527	2.72	Mira
Z Pup	509	2.71	Mira
QX Pup			Mira
R Cnc	362		Mira
Х Нуа	301		Mira
R UMa	302	2.48	Mira
S Crt		2.19	
VX UMa		2.33	Mira
T UMa	257		Mira
RS Vir	354		
FV Boo	340		SR
W Hya	361	2.56	Mira
RX Boo	278		
Y Lib		2.44	
S CrB	360	2.56	Mira
SW Lib	292	2.47	Mira
FS Lib	415	2.62	Mira
IRC+10374			Mira
IRC-20540	510	2.71	Mira
SY Aql	356		
SV Peg	145	2.16	SR
R Aqr	390		Mira

Current results of astrometric VLBI observations toward variable stars with VERA.

Parallax of variable stars with VLBI astroemtry

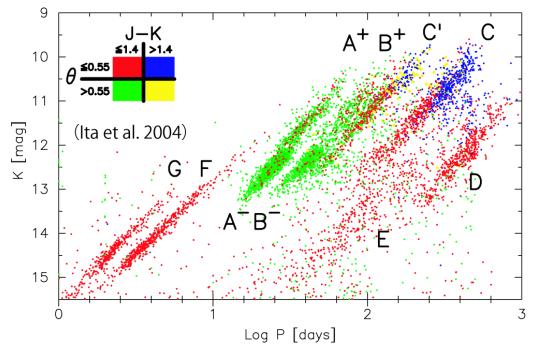
Period-luminosity relation of the Galactic Mira variables obtained from VLBI astroemtry.


	rablez. Results from vEDr astrometry							
	Source	Туре	Parallax† [mas]	P [day]	LogP	тк‡ [mag]	Mк [mag]	
	T Lep S Crt R Aqr SY Scl RX Boo	Mira SR Mira Mira SR	$\begin{array}{c} 3.06 \pm 0.04 (a) \\ 2.33 \pm 0.13 (b) \\ 4.7 \ \pm 0.8 \ (c) \\ 0.75 \pm 0.03 (d) \\ 7.31 \pm 0.5 \ (e) \end{array}$	368 310* 390 411 340	2.566 2.190 2.591 2.614 2.531	0.73 (i) -1.01(h) 2.61 (j)	-7.45±0.03 -7.43±0.12 -7.65±0.37 -8.01±0.09 -7.53±0.15	
VLBA	S CrB U Her RR Aql W Hya R Cas	Mira Mira Mira SR Mira	$\begin{array}{c} 2.39{\pm}0.17(\mathrm{f})\\ 3.76{\pm}0.27(\mathrm{f})\\ 1.58{\pm}0.40(\mathrm{f})\\ 10.18{\pm}2.36(\mathrm{g})\\ 5.67{\pm}1.95(\mathrm{g}) \end{array}$	360 406 394 361 460	2.556 2.609 2.595 2.558 2.663	-0.27(h) 0.46(h) -3.16(h)	-7.90±0.15 -7.39±0.16 -8.55±0.56 -8.12±0.51 -8.02±0.78	

Table² Results from VLBI astrometry

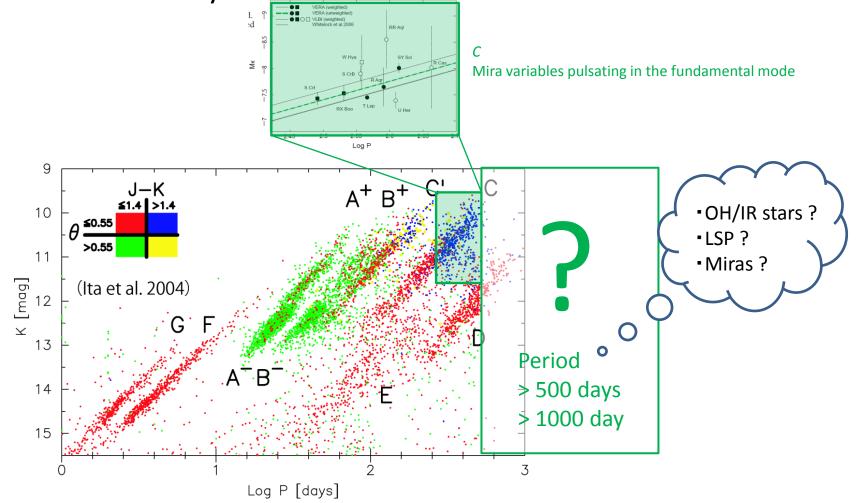
[†] Reference of the parallax; (a)Nakagawa et al 2014, (b)Nakagawa et al 2008, (c)Kamohara et al 2010, (d)Nyu et la 2011, (e)Kamezaki et al 2012, (f)Vlemmings & van Langevelde 2007, and (g)Vlemmings et al. 2003.

[‡] Reference of the m_K; (h)Whitelock et al. 2000 (Fourier mean magnitude), (i)Jura & Kleinmann 1992, (j)Whitelock et al. 1994, (k)Glass & van Leeuwen 2007, and (l)Feast & Whitelock 2000.


[*] For the period of S~Crt, we use 310~days, which is the double of its first overtone period of 155~day.

Nakagawa et al. 2014 PASJ

Sequences of long period variables

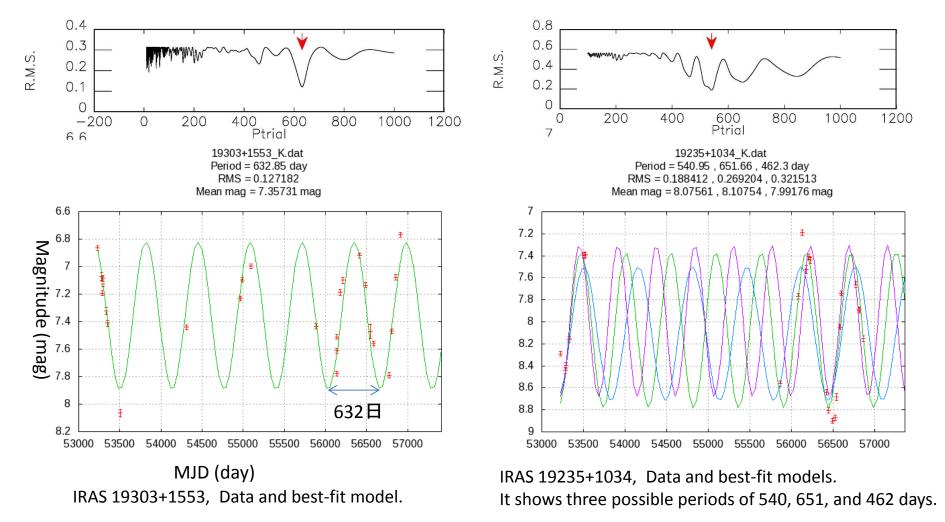

• Ita et al. 2004 shows several sequences of variable stars in LMC.

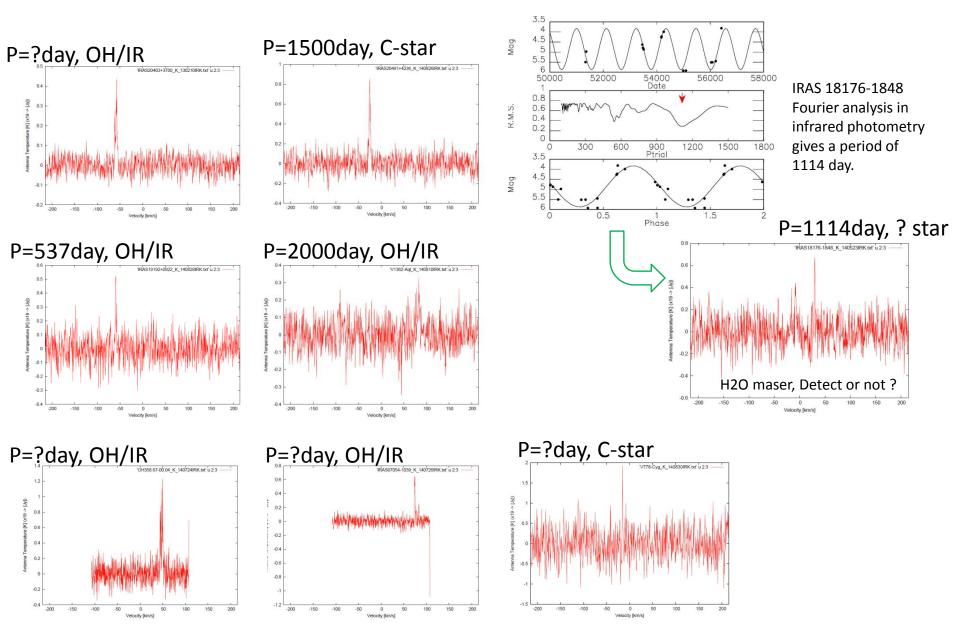
- A+ Cyan RGB variables and metal-poor and old AGB variables
- *A* Yellow Less regularly pulsating AGB variables
- *B* Orange RGB variables and metal-poor and old AGB variables
- *B*+ Green Less regularly pulsating AGB variables
- C' Blue Mira variables pulsating in the first-overtone mode
- *C* Red Mira variables pulsating in the fundamental mode
- D Steel-blue Some obscured variables and unknown variables
- *F* Magenta Cepheid variables pulsating in the fundamental mode
- *G* Purple Cepheid variables pulsating in the first-overtone mode

Sequences of long period variables

- Ita et al. 2004 shows several sequences of variable stars in LMC.
- Almost NO observation for variable stars with pulsation periods > 500 days.

Long period variables NOT on the known sequences ?


- OH/IR stars show very long period. There are many OH/IR stars whose pulsation period are not determined.
- Parallax measurements of OH/IR stars is not so many.
- Do they show period-luminosity relation ?
- Is there a pulsation mechanism with period of >1000 days ?
- Long secondary period (LSP) in variable stars.
 - Reason of the periodicity
 - Pulsation ? •••What kind of pulsation mode, mechanism ?
 - Binary system ? (Red giant with a low-mass companion, interaction with circum stellar matters.)
 - Spotted star ? (Dark spot on their photosphere.)

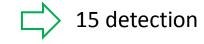

Parallax measurements of the stars give distances, free from any assumption of their properties, and it helps to deduce accurate physical parameters.

Detection of 'very' long period variables from K-band monitoring using Kagoshima university 1m telescope

Results of Fourier analysis of light curve in K-band.

H₂O maser detection from 'very' long period variables

Vertical axis shows an antenna temperature. Flux density in [Jy] can be obtained by multiplying 19 to the values.


H₂O maser survey for 'very' long period variables at VERA IRIKI station.

- ~280 candidate sources. (OH/IR, Carbon star, Mira, SR, LSP, IR source, ...)
- K-band variable star with period of ~1500 day found from 1m Kagoshima telescope.
- H₂O maser survey at 22 GHz.
- Detection criterion : ~3 Jy
- Vlsr range : -200 < Vlsr < +200 km/s

ID	Name	Coordinate (RA Dec)	Name2, Comment	Period (day)	d Intensity	Catalog
99	AW_Tau	05 47 30.22 +27 08 12.4	SR, IRAS 05443+2707	564	6Jy∆	www.hs.uni-hamburg.de
26	NSV 17351	07 07 49.38 -10 44 05.9	IRAS07054-1039, 弱いけど検出@2011年, OH/IR		11Jy	www.hs.uni-hamburg.de
100	AH_Sco	17 11 17.02114 -32 19 30.7132	IRAS 17080-3215, IRC-30282	714	20Jy	www.hs.uni-hamburg.de
27	OH 358.667-0.044	17 42 35.02 -30 05 41.9	入来単一鏡データなし、エントリーはある。(OH358.67-00.04.src)		13Jy	Kim et al 2010
166	OH 12.3-0.2	18 13 08.8 -18 27 51	MSX5C G012.2118-00.2307 , Mas,~		26Jy	Kim et al 2010
50	IRAS18176-1848	18 20 36.7 -18 47 09	18 20 36.7 -18 47 09	1114	15Jy	Kim et al 2013
9	OH 30.1-0.7	18 48 41.91 -02 50 28.3	V1362 Aql, IRAS 18460-0254, Mira(SIMBAD), NonDetectOVO@2013	2000	12Jy∆	山下
13	OH 44.8-2.3	19 21 36.52 +09 27 56.5	IRAS 19192+0922, Maser(SIMBAD), NonDetectOVO@2006	537	38Jy?	Ohnaka 2013
251	OH 57.5+1.8B	19 31 45.8 +22 33 43	OH 57.5+1.8B ,Mas,			Ohnaka 2013
96	V778_Cyg	20 36 07.402 +60 05 26.15	C* 20 36 07.402 +60 05 26.15 C4,5J 108 1			Cho 2010
49	IRAS 20403+3700	20 42 18.49 +37 11 41.0	20 42 18.49 +37 11 41.0 ~ 12 0 検出@2013年2月、9Jy		136Jy	Cho 2010
256	OH 80.8-1.9	20 46 25.54 +40 06 59.4	NML_Cyg, V1489 Cyg, IRC+40448, V* , M7-8		9Jy	CatalinaSurvey (CSDR2)
17	OH 83.4-0.9	20 50 57.7 +42 48 04	IRAS 20491+4236, Carbon Star(SIMBAD), OVOエントリー無し	1500	36Jy▲	www.hs.uni-hamburg.de
134	CSS_J213104.1+110912	21 31 04.10 +11 09 12.3	V=11.57 P=455.00 Amp=2.43 , UU_Peg		14Jy	www.hs.uni-hamburg.de
98	EU_And	23 19 58.880 +47 14 34.54	C* 23 19 58.880 +47 14 34.54 R 83 0		380Jy	www.hs.uni-hamburg.de
					A 14 1	

△ Marginal detection.

Detected as absorption line

