G9.62+0.20におけるメタノールメーザーの 周期的強度変動要因の研究

茨城大学 博士前期課程1年次 佐藤 宏樹

▶先行研究 ▶観測・解析 ▶今後の展望・まとめ

先行研究

G9.62+0.20の特徴

 5.2±0.6 kpc(年周視差による)先の大質量 星形成領域 (Sanna et al. 2009)
 5つの電波連続波源が存在する
 A, C, D, EはHII領域 (Garay et al. 1993)
 成分Eの6.7GHz,12.2GHzのメタノール メーザー成分が周期的な強度変動を示す

G9.61 + 0.20

20 cm

6 cm

-20° 31

メーザー強度変動の周期性

およそ10年のモニター観測結果から,周期が244.4日であるとし,その周期をもつフレアの位相差は最大で8日である
(Goedhart et al. 2014)

▶ 間欠的な周期変動 → 連星の公転周期が関係する強度変動モデル

フレアの位相差をLight travel timeで説明する

VLBI観測で得た空間分布

問題点

各メーザースポットのダスト状態が同じ,かつ中心星から同心円上に分布すると、していた。と仮定すると、横方向500 AUに対して奥行き方向が1400 AU(8光日)となる

フレアの位相差を生むLight travel time以外の要因を解明したい!

観測·解析

観測条件と解析概要

>観測

日立32m電波望遠鏡(日立局)
較正天体として毎日観測
観測期間:2012/12/31-2015/10/21
解析に用いたサンプル数:664

日立局観測パラメータ

受信周波数 [MHz]	6664- 6672
システム雑音温度 (典型値)[K]	30
半値全幅 [arcmin]	4.6
チャネル数	8192
速度分解能 [km s-1]	0.044
ノイズレベル (1σ) [Jy]	~0.3

>解析

▶ 日立局で検出したスペクトルの速度成分を先行研究と照合

- > 周期的強度変動成分の周期解析
- 主な周期変動成分間の相関解析

日立局モニター観測結果

3成分(周期変動あり)を新検出

>変動傾向

>間欠的かつ周期的

>周期:241±15日(LS periodogram)

周期性の要因は既知のメーザー源と同じ

速度成分間の相関

▶フレアの位相差は最大で32日 に広がった

→ Light travel timeとして 計算すると ~5000 AU

2014年7月のフレア前後60日の時系列データの相関

244日の変動周期を持つ成分間の相関

成分 [km s ⁻¹]	遅延 [days]
1.3 vs 1.8	8
1.3 vs 2.2	-1
1.3 vs 3.0	-3
1.3 vs 5.0	-7
1.3 vs 8.1	-24
1.3 vs 8.8	-22
5.0 vs 8.1	-14
5.0 vs 8.8	-14
8.1 vs 8.8	1

各成分のフレア形状についての考察

フレアの位相差(日)= Light travel timeとする際に、 「フレアの形状は同一で、位相差 = ピークの時間差」という仮定が入っていた 」位相差(ピークの時間差)の原因として、メーザーガス雲の光学的厚みの違いが 考えられる

フレア形状の違いは新検出成分において顕著だが,新検出成分の空間分布は不明

2014年7月のフレア前後60日の 各速度成分の規格化強度

今後の展望・まとめ

新検出成分の空間分布の決定のため, JVNへ観測提案を提出

▶これまでは単一鏡スペクトル成分の視線速度とVLBIマップの視線速度の比 較で対応付けをしていた

→ 視線速度の近い成分を混同する可能性

▶変動の周期性を利用し、VLBIマップ上で変動を捉える

→ 既知の周期変動成分についても視線速度の混同なしに決定できる!

まとめ

▶較正天体として毎日観測

→ 周期的強度変動を示すメーザー速度成分を3つ新検出

▶新検出速度成分の変動傾向は間欠的で,周期は244日程度 →周期的強度変動の要因は既知のメーザー源と同じ

本天体の周期変動を説明する連星系モデルを仮定

→ メーザースポットのダスト状態が均質,かつ中心星から同心円上に分布 するとした場合,Light travel timeで制限されるスポット間の視線方向の 広がりは最大で5000 AU

>フレア形状の違いに注目

→形状の違いが顕著な新検出成分の空間分布は不明

VLBI観測を行い,新検出成分の空間分布を決定するつもり ▶新検出成分の空間分布と併せてフレア形状の解析を行う

ご清聴ありがとうございました

 ■間欠的な変動傾向 → 連星系の公転周期が関係していると考えられる
 ■主星17M_☉, 伴星8M_☉がケプラー回転している場合, 244.4日周期は 軌道長半径2.23 AUで実現する
 ●連星の近接点での衝撃波加熱による放射で, HII領域の電離度が変化し, 種 光子が微増する

LS periodogram

LS periodogram

▶時系列プロットをフーリエ変換し,強度変動の振動数を導出

False alarm probabilityは, 誤った振動数を正しいとする割 合のこと

新検出成分 [km s ⁻¹]	周期(LS) [days]
5.0	120±4 241 ±15
8.1	121 ±4 241±15
8.8	120±4 241 ±15

関数フィッティング

▶用いた関数

新検出成分 [km s ⁻¹]	周期(関数) [days]
5.0	248
8.1	248
8.8	247

日立局観測結果解析のまとめ

>変動周期が241±15日の変動成分を3つ新検出した

▶新検出成分が加わると,フレア位相差は8日(1400 AU)から32日(5000 AU) と,さらに大きくなる

▶ここまではフレアの位相差 = フレアピークの時間差という仮定が存在していた

▶実際にはフレアの形状が各成分で異なる

メーザースポットのダストの光学的厚み などを考慮する必要がある

>新検出成分の空間分布は分かっていない

