z>4 Radio-loud クェーサーの 電波構造に基づく種族推定

山口大学大学院 創成科学研究科 基盤科学系専攻 電磁宇宙物理学研究室 修士2年 古谷 庸介 共同研究者 新沼浩太郎,藤澤健太(山口大学),Z.-Q.Shen(上海天文台)

VLBI懇談会2017@帝京科学大学

High-zの基本構造

高赤方偏移クェーサーの電波構造は大きく2つに分けられる.

CSO構造

core-jet構造

High-zの基本構造:CSO構造とスペクトル

CSO: Compact Symmetric Object (Wilkinson et al. 1998)

→両サイドにホットスポットを持ったdoubleまたはtriple構造をし ている

→ホットスポット間の距離が~ 160 pcで低赤方偏移クェーサーよ りも1/1000倍以下の実スケールである.

→ドップラーブーストが効かないことから強度変動はせず,静的な スペクトル指数を示す.

High-zの基本構造:CSO構造とスペクトル

→両サイドにホットスポットを持ったdoubleまたはtriple構造をしている.
 →ホットスポット間の距離が~ 160 pcで低赤方偏移クェーサーよりも1/1000倍以下の実スケールである.
 →ドップラーブーストが効かないことから強度変動はせず、静的なスペクトル指数を示す.

CSS (Compact Steep Spectrum; $v_c < 500$ MHz, d = 1 - 20 kpc) GPS (Gigahertz Peaked Spectrum; $v_c = 1 - 5$ GHz, d < 1 kpc) HFP (High Frequency Peaker; $v_c > 5$ GHz, d < 1 kpc)

シンクロトロン自己吸収…α = 5/2

→ シンクロトロン放射

若いクェーサーの特徴と考えられている

High-zの基本構造: core-jet構造とスペクトル

core-jet的構造(Blazar的構造)

→ジェットをフェイスオンで観測しているとされている. →ドップラーブーストによって激しい強度変動を示す. → β_{app} = 10c(7年間隔)

High-zの基本構造: core-jet構造とスペクトル

core-jet的構造(Blazar的構造)

→ジェットをフェイスオンで観測しているとされている. →ドップラーブーストによって激しい強度変動を示す. → β_{app} = 10c(7年間隔)

High-zの基本構造: core-jet構造とスペクトル

core-jet的構造(Blazar的構造)

→ジェットをフェイスオンで観測しているとされている. →ドップラーブーストによって激しい強度変動を示す. → β_{app} = 10c(7年間隔)

高赤方偏移クェーサーに対するより多くのVLBI観測が必要!!

先行研究からの問題点:

高赤方偏移クェーサーのVLBI検出数は~50天体(z > 4)しかなく観測的バイアスがかかって いると考えられる.

(選出条件:高光度が予想される天体.赤方偏移が観測時点で最も高い天体.etc.)

"<u>高赤方偏移クェーサーのVLBI観測からの</u>

<u>種族推定</u>"

▶▶●多数の高赤方偏移クェーサーに対し8.4GHzでのJVN観測を行い、電波構造と スペクトル指数から高赤方偏移クェーサーの種族を推定.

	Stru	cture	Spectrum		
	Blazar	CSO	FSRQ	CSS/GPS/HFP	
Spectrum	Flat/Inverted	SteepConvex	Flat/Inverted	Steep/Convex	
Variability	(yes)	(no)	(yes)	(no)	
Structure	core-jet	double	point/core-jet	point/double	
Boost	yes	no	yes	no	

天体選出と観測

intera line

1000

KOD

天体選出と観測概要

1.4 GHzで観測されたAGNのうち,赤方偏移z > 4にある13天体を選出

選出条件

 1.4 GHz電波カタログ(FIRST)より, 8.4 GHzでの予想 フラックス密度が12 mJy以上の天体を選出

② SDSSクェーサーカタログからz > 4の天体を選出

観測概要

- 観測周波数:8.4 GHz (帯域幅:32 MHz/512MHz)
- 偏波:右回円偏波
 - 観測天体数:3天体 × 3観測
- 観測時間:12時間 × 3回

	水沢 [20 m]	小笠原 [20 m]	石垣 [20 m]	入来 [20 m]	日立 [32 m]	筑波 [32 m]	鹿島 [34 m]	山口 [32 m]
EPOCH 1 [32 MHz]		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	
EPOCH 2 [32 MHz]	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc		
EPOCH 3 [512 MHz]	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc

Name	z	$f_{1.4 m GHz}$ (mJy)	$f_{8.4 m GHz} \ m (mJy)$	$\log R$
J0835 + 1825	4.421	52.35	21.4	3.64
J0839 + 5112	4.403	41.64	17.0	2.47
J0940 + 0526	4.475	58.48	23.9	3.02
J1021 + 2209	4.262	139.31	56.9	3.54
J1026 + 2542	5.304	239.44	97.8	3.72
$J1325 \pm 1123$	4.412	71.05	29.0	2.94
J1348 + 1935	4.404	49.92	20.4	2.97
J1412 + 0624	4.467	43.47	17.7	2.93
J1420 + 1205	4.034	87.30	35.6	3.28
J1430 + 4204	4.705	215.62	88.0	3.78
J1510 + 5702	4.309	254.97	104.1	4.13
$J1535 {+} 0254$	4.348	80.25	32.8	3.29
J1548 + 3335	4.669	37.84	15.4	-3.19

intera line

000

KOD

8天体をVLBIで検出

9天体観測したうち8天体をVLBIで検出

- VLBIイメージが得られた天体: 5天体(帯域幅が512 MHzの天体 or 明るい天体)
- 本観測でSEDが得られた天体: 5天体(イメージ3天体,基線検出のみ2天体)

非検出天体: J1548+3334について

 EVN観測から、1.7 GHz, 4.9 GHzのフラックス密度とスペクトル指数からJVNの検 出限界以下であることはコンシステント

Epoch	Name	Detection	Peak flux	r.m.s.	Beam size	SED
			(mJy/beam)		$(\max \times \max)$	
1	J0835+1825	\bigtriangleup	54.2 ± 1.2	18.1	25.4×9.4	×
	J0839 + 5112	\bigtriangleup	44.6 ± 1.9	8.1	69.9×43.3	\bigcirc
	J0940 + 0526	\bigtriangleup	34.9 ± 1.4	8.1	101.0×38.9	\bigcirc
2	J1430+4204	\bigcirc	204.6 ± 15.8	0.1	3.81×2.4	\bigcirc
	J1510 + 5702	\bigcirc	568.0 ± 62.1	6.7	5.81×5.6	\bigcirc
	J1548+3334	×	< 70.8	50.6	-	×
3	J1325+1123	\bigcirc	40.1 ± 2.5	0.2	44.5×6.0	\bigcirc
	J1348 + 1935	\bigcirc	28.6 ± 1.9	0.1	30.7 imes 6.1	×
	J1412 + 0624	\bigcirc	16.0 ± 1.6	0.2	62.0×5.8	×

光度とドップラー係数の導出

楕円ガウシアンフィットから輝度温度とドップラー係数の下限値を推定

- 基線検出のみの場合、*d*_{core} = *d*_{beam}と仮定
- $d_{\text{core}} < d_{\min}$ の場合, $d_{\text{core}} = d_{\min}$ と仮定

Minimum resolvable size $d_{\min} = \frac{2^{1+\beta/2}}{\pi} \left[\pi ab \ln 2 \ln \frac{(S/N)}{(S/N) - 1} \right]^{1/2} \qquad \delta = \frac{T_B}{T_{B,eq}} = \frac{T_B}{5 \times 10^{10} \text{ K}}$ $\beta: \text{ weight, S/N: Signal to Noise Ratio} \quad (Fomalont 1999) \qquad T_{B,eq} = 5 \times 10^{10} \text{ K}; \text{ Readhead 1994}$

Epoch	Name	Core size	Total flux	$T_{ m b}$	δ	L
		(mas)	(mJy)	(K)		$(10^{26} \text{ WHz}^{-1})$
1	J0835+1825	$< (25.4 \times 9.4)$	54.2 ± 1.2	$> 2.1 \times 10^7$	$> 1.3 \times 10^{-4}$	23.1
	J0839 + 5112	$<(69.9\times43.3)$	44.6 ± 1.9	$> 1.4 \times 10^6$	$> (8.7 \pm 0.4) \times 10^{-6}$	14.1
	J0940 + 0526	$< (101.0 \times 38.9)$	34.9 ± 1.4	$>(8.3\pm0.3)\times10^5$	$> (5.3 \pm 0.2) \times 10^{-6}$	7.5
2	J1430+4204	0.35 imes 0.22	204.6 ± 15.8	$(25\pm3)\times10^{10}$	1.6 ± 0.2	69.4
_	J1510 + 5702	< 0.58	568.0 ± 62.1	$> (15 \pm 2) \times 10^{10}$	$> 1.0 \pm 0.2$	148.5
3	J1325+1123	< 0.94	40.1 ± 2.5	$> (4.3 \pm 0.4) \times 10^9$	$> (2.7 \pm 0.2) \times 10^{-2}$	5.8
	J1348 + 1935	< 2.1	28.6 ± 1.9	$> 6.5 \pm 0.6 \times 10^8$	$> (4.1 \pm 0.4) \times 10^{-3}$	18.2
	J1412 + 0624	< 1.8	16.0 ± 1.6	$>4.7\pm0.7\times10^8$	$> (2.9 \pm 0.4) \times 10^{-3}$	16.3

J1430+4204, J1510+5702について

J1430+4204, J1510+5702について

VLBA calibrator searchよりSバンドとXバンドによる同日観測が複数エポック行われており、スペクトル指数の変動が起こっている.

コンパクト、 $\delta > 1$ 、 $\alpha > -0.5$ 、強度変動

→ FSRQであると考えられる

検出天体の種族推定

電波構造、ドップラー係数、スペクトル指数、強度変動による種族推定まとめ

・J0835+1825:25.4 × 9.4 mas以下のコンパクトな構造 (VLBI初検出)

• **J0839+5112:**点源, *δ* > 10⁻⁶, フラットスペクトル

→ <u>FSRQ or HFP 候補</u>

J0940+0526:点源, δ > 10⁻⁶, フラットスペクトル
 → <u>FSRQ or HFP 候補</u>

J1325+1123:点源, δ>10⁻², フラットスペクトル
 → FSRQ or HFP 候補

• J1348+1935: 30.7 × 6.1 mas以下のコンパクトな構造 (VLBI初検出)

・J1412+0624:62.0 × 5.8 mas以下のコンパクトな構造 (VLBI初検出)

•J1430+4204:点源、 $\delta > 10^{-2}$ 、フラットスペクトル、強度変動あり

\rightarrow **FSRQ**

・J1510+5702:点源、 $\delta > 10^{-2}$ 、フラットスペクトル、強度変動あり

→ FSRQ

$L_{8.4GHz}$, α の赤方偏移依存性

$L_{8.4GHz}$, α の赤方偏移依存性

スペクトル指数の変化 \rightarrow 低赤方偏移に行くにかけてスティープからフラットへ遷移 ト $\underline{z=4-5 \ c\ a \sim 0, z>5 \ c\ a \sim -1}$

クェーサーの周辺環境がz~4とz~6で異なっているある可能性がある. → 高赤方偏移クェーサーに対してより大規模なVLBI観測が必要

$L_{8.4GHz}$, α の赤方偏移依存性

スペクトル指数の変化 \rightarrow 低赤方偏移に行くにかけてスティープからフラットへ遷移 ト z = 4 - 5 では $\alpha \sim 0, z > 5$ では $\alpha \sim -1$

クェーサーの周辺環境がz~4とz~6で異なっているある可能性がある. → 高赤方偏移クェーサーに対してより大規模なVLBI観測が必要 ▶▶▶ JVN + EAVNによるコラボレーション観測を計画中.

まとめ

- これまでにわかっている高赤方偏移クェーサーの性質は観測によるバイアスが強くかかっている可能性がある。
- z > 4の9天体のクェーサーに対してVLBI観測を行った。
 → 9天体中8天体をVLBIで検出(うち5天体はVLBIイメージを取得:全て点源)
- スペクトル指数は全てFlat or Invertedで特にJ1430+4204とJ1510+5702はVLBA観測 よりFSRQと推定.

J0835+1825 → 25.4 × 9.4 mas以下のコンパクトな構造 (VLBI初検出) J0839+5112 → FSRQ or HFP 候補天体 J0940+0526 → FSRQ or HFP 候補天体 J1325+1123 → FSRQ or HFP 候補天体 J1348+1935 → 30.7 × 6.1 mas以下のコンパクトな構造 (VLBI初検出) J1412+0624 → 62.0 × 5.8 mas以下のコンパクトな構造 (VLBI初検出) J1430+4204 → FSRQ J1510+5702 → FSRQ