VERAを用いた1000AUスケールの原始星ディスクにおける星形成過程の研究

椎原駿介、面高俊宏 (鹿児島大学)、永山匠(国立天文台)

概要 ~ Abstract~

100AUほどの太陽系では、惑星はほぼ同一平面上にあり、太陽と惑星の自転軸はほぼ揃っている。そこで、私たちは一段階大きなスケールの1000AUほどの原始星ディスク内でも 星の自転軸の向きが揃っているかを調べるために、大質量星形成領域G35.03+0.35 に注目した。大質量星形成領域G35.03+0.35 コアAには、ALMAによる観測から直径2000AUほ どのケプラー回転をするディスクが存在することが分かっている。そして、BeltranらによるとSpitzerによる4.5µmの観測からディスクに対して垂直方向の双極流アウトフローが存在 することも明らかになっている。さらに、このコアには水メーザーが付随している。そこで、私たちは水メーザー源が付随する原始星のディスクの向きを決めるために、VERAによる 観測で水メーザー源の内部運動を調べた。すると、双極流アウトフローを示唆する結果が得られた。しかし、このアウトフローの向きはSpitzerによる観測から得られたアウトフローの | 向きとは異なっており、ディスク方向に沿っていた。つまり、原始星のディスクの向きは2000AUほどのケプラー回転をするディスクに対してほぼ直交していることが分かった。これ は、1000AUスケールのディスク内では星の自転軸の向きが揃っていない例となる。

導入 ~	-Introduction~	観測 ~ Observations~
1.目的	1000AUスケール(距離に基づく)のディスク内でも星の自転軸の 向きが揃っているか	観測: VERA 20m望遠鏡 4局 (VERA - VLBI Exploration of Radio Astrometry)
太陽系	・大質量原始星のケプラー回転するディスクが	期间、回致: 2015年5月 ~ 2016年10月の间に5回 周波数: 22.235GHz(水メーザー)

・京都モデルで形成の理解 ・サイズ ~60AU以上

太陽はケプラー回転するガス 円盤内の中心で誕生

回転するガス円盤内の赤道面に チリが沈殿して惑星を形成 ➡太陽の自転軸と惑星の自転軸は ほぼ平行で、ほぼ公転面に垂直

ALMAの観測で存在することが報告 ・サイズ ~1000AU

➡角運動量保存則から、ディスク内の 中・小質量星の自転軸が大質量星の自転 軸と平行であることが期待される?

2.大質量星形成領域 G35.03+0.35について

観測天体 G35.03+0.35 R.A. 18h 54m 0.6456s、Dec. 02° 01' 19.393" R.A. 18h 51m 46.7230s、Dec. 00° 35' 32.364" 参照電波源 J1851+0035

0.5

0.0

Ê -0.5└

-1.5

2011.0

結果 ~ Results~

年周視差 $\pi = 0.376 \pm 0.059$ mas 距離 D=2.66^{+0.49}_{-0.36} kpc 固有運動 (μx , μy) = (-1.17±0.14, -4.87±0.74) mas/yr 標準偏差 (σx, σy) = (0.049, 0.46) mas

1.VLBAの結果との比較

年周視差 $\pi = 0.430 \pm 0.040$ mas 距離 D=2.32 +0.23 kpc

年周視差 (R.A.) 0.4

Time (years) 図5. VLBAによる水メーザーの観測で得られた 年周視差(R.A.)の図(Wu et al. 2014)

J1855+025⁻

図1. Spitzerの8µmでの観測により得られた マップ (Beltran et al. 2014)。G35.03+0.35 は黒い四角に位置する。

図2. ALMAによる343GHzでの観測(緑の等高線)と Spitzerによる4.5µmでの観測結果を重ねた図 (Beltran et al. 2014)。Beltranは4.5µmの放射は コアAに位置するハイパーコンパクトHII領域を形成 する大質量星が形成時に出したアウトフローによっ てできたキャビティのシェルからのものとしている。

図3. ALMAによるコアAに対するCH3CNの観測結果 (Beltran et al. 2014)。速度勾配が赤い点線に沿って 存在している。Beltranは速度勾配はケプラー回転する ディスクによるものだとしており、ディスクの直径は およそ2000AUとしている。

図2,3より大質量星の双極流はケプラー

図6. 国立天文台永山氏の解析による内部運動の図。双極流アウト フローを示唆する結果から、黄色の丸の付近に水メーザー源が 付随する原始星が存在し、ディスクの向きは黒い点線に沿うと 考えられる。

図7. VLBAによる水メーザーの観測で得られた 内部運動の図(Wu et al. 2014)。私たちの結果と おおよそ一致している。

VLAによる観測データ ★ OHメーザー	
🔺 6.7GHz メタノールメーザー 🕒 水メーザー	回転するディスクに垂直であることが分かる。

私たちはコアAに2つの星が存在すると考えた。

理由① HC HII領域の広がりからHII領域の 年齢を概算

・HII領域のサイズ: ~2000AU

・HII領域の広がる速度: ~6km/s → 大質量星は~2000年前に主系列星に →大質量星とは異なる、水メーザー源が 付随する原始星が存在すると考えられる

理由② 水メーザーとケプラー回転するディスクの 視線速度を比較 • G35.03+0.35 Vsys = 51.5km/s

・水メーザー源の視線速度 44 ~ 62km/s

➡同じ回転ディスク内に存在すると考えられる。

一般には、ケプラー回転するディスクの中で 482つの星が同時期に生まれた場合は双極流の

(2000AU)では星のディスクの向きが揃って

①、②からコアAにHII領域を形成する大質量星と 水メーザー源が付随する原始星が存在すると考えた。

➡水メーザー源の内部運動を調べることで、目的である1000AUスケールの ディスク内でも星の自転軸の向きが揃っているかを確かめられる!

参考論文~References~

M.T. Beltran, A. Sanchez-Monge, R. Cesaroni, M.S.N. Kumar, D. Galli, C.M. Walmsley, S.Etoka, R.S. Furuya, L. Moscadelli, T. Stanke, F.F.S. van der Tak, S. Vig, K.-S. Wang, H. Zinnecker, D. Elia, and E. Schisand. 2014, A&A,571,A52

Y. W. Wu, M. Sato, M. J. Reid, L. Moscadelli, B. Zhang, Y. Xu, A. Brunthaler, K. M. Menten, T. M. Dame, and X. W. Zheng 2014, A&A,566,A17