Improvements in DP Beam Search for Phrase-based SMT

Richard Zens and Hermann Ney

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany
Overview

1. Introduction & related work
2. Search for phrase-based MT
3. Experimental results
4. Summary & conclusions
Contributions

- clear & precise description of phrase-based search
- analysis of important aspects
 - rest score estimation
 - lexical vs. coverage hypotheses
 - beam search including cube pruning
- on a large data task
Related Work

• based on
 – [Zens & Och 02]: phrase-based model
 – [Och 02]: rest score estimation (for AT)
 – [Tillmann & Ney 03]: search for SWB models

• other related work:
 – Pharaoh [Koehn 03], Moses [Koehn & Hoang 07]
 – many others, e.g. [Tillmann 06], [Moore & Quirk 07], ...
System Architecture

Source Language Text

Preprocessing

\(F \)

Global Search

\[\hat{E} = \arg\max_{E} \{ p(E|F) \} \]
\[= \arg\max_{E} \{ \sum_m \lambda_m h_m(E, F) \} \]

Postprocessing

Target Language Text

Models

Language Models

Phrase Models

Word Models

Reordering Models

\[\ldots \]
Search for Phrase-based SMT

interdependencies:

- find phrase boundaries
- reordering in target language
- find most ‘plausible’ sentence

constraints:

- no gaps
- no overlaps
Search

- **goal:** \(\arg \max_E \left\{ \max_S \sum_{m=1}^M \lambda_m h_m(E, S; F) \right\} \)

with target sentence \(E \), segmentation \(S \), source sentence \(F \), models \(h(\cdot) \), weights \(\lambda \)

- **models:**
 - within phrase models:
 phrase lexica, word lexica, word penalty, phrase penalty
 - \(n \)-gram backing-off language model
 - distortion penalty
Search Space

• source sentence $F = f_1, \ldots, f_J$

• states (C, \tilde{e}, j)
 – coverage $C \subseteq \{1, \ldots, J\}$: translated input positions
 – LM history \tilde{e} to predict the next target word
 – source position j for the distortion model

• edges (\tilde{e}, j, j')
 – generate target phrase \tilde{e}
 – which covers the source sentence words $f_j, \ldots, f_{j'}$

• expanding (C, \tilde{e}, j) with (\tilde{e}', j'', j') results in state

$$(C \cup \{j'', \ldots, j'\}, \tilde{e} \oplus \tilde{e}', j')$$
Lexical vs. Coverage Hypotheses

- (partial) hypothesis: path to state \((C, \tilde{e}, j)\)
- for each cardinality \(c = |C|\):
 - we have a list of coverage hypotheses \(C\)
- for each coverage \(C\):
 - we have a list of lexical hypotheses \((\tilde{e}, j)\)
- beam search: limit the list sizes
Algorithm Details

- DP beam search
 - generate hypotheses with increasing cardinality by expanding hypotheses with lower cardinality
 - recombine hypotheses with same state
 - expand only promising hypotheses
- share computations between expansions, e.g. check for overlap, rest score computation, ...
- early pruning
 - stop expansion as soon as possible
- expand most promising candidates first
Rest Score Estimation

• estimated score of hypothesis completion (inspired by A*)

• previous work:
 – [Och 02, Och & Ney 04]
 TM & LM per source position, distortion
 – [Koehn 03]
 TM & LM per source sequence, no distortion

• here: comparison of
 – computation per position and per sequence
 – models: TM only; TM & LM; TM, LM & distortion
Experimental Results

- NIST Chinese-English large data task
- **TM:**
 - training data: 8 M sentence pairs, 250 M words
 - phrase-based, word-based lexica, word / phrase penalty
- **LM:**
 - 4-gram, trained on 650 M words, SRILM [Stolcke 02]
- reordering:
 - distortion penalty, reordering window: 10
 - lexicalized reordering model [Zens & Ney 06]
- **evaluation:**
 - case-insensitive Bleu score (mt-eval) on NIST 2002 test set
Translate test set with various pruning parameters settings.
Model score averaged over whole test set (878 sentences).
Rest Score Estimation

![Graph showing BLEU score vs. max. number of hypotheses per source word](image)

- None
- TM
- +LM
- +Dist

Per Position:
- TM
- +LM
- +Dist

Per Sequence:
- TM
- +LM
- +Dist
Lexical vs. Coverage Hypotheses

![Graph showing BLEU score vs. Max. Number of Lex. Hyps per Cov. Hyp. with lines for different Max. Cov. Hyps: 1, 4, 16, 64, 256. The BLEU score increases with the number of lex. hyps, with distinct lines for each max. cov. hyps.](image-url)
Effect of Cube Pruning

Numbers averaged over whole test set; vary beam sizes.
Lexicalized reordering not used, just distortion penalty.
Comparison with Moses

Same TM, LM, etc.; vary beam setting
Lexicalized reordering not used, just distortion penalty.
Summary & Conclusions

- **Summary**
 - detailed problem description
 - efficient solution
 - in-depth analysis

- **Conclusions**
 - search important for good translation quality
 - rest score estimation allows for small beam sizes
 - distinction lexical vs. coverage hypothesis important
 - additional cube pruning not necessary
 - significantly faster than Moses
THANK YOU FOR YOUR ATTENTION!
References

