The MIT-LL/AFRL IWSLT-2009 MT System

Wade Shen, Brian Delaney, A. Ryan Aminzadeh
Tim Anderson and Ray Slyh
2 December 2009

This work is sponsored by the United States Air Force Research Laboratory under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.
Outline

• IWSLT-2009 System Architecture

• Better Arabic Morphology Processing
 – CoMMA

• Domain Adaptation Overview
 – Unsupervised and Semi-supervised Adaptation
 – Human-in-the Loop Adaptation
- **Standard Statistical Architecture**

- **Developed in-house to support SMT experiments**
 - Framework for experiments with low-resource languages
 - Test-bed for S2S MT system

- **Most components are home-grown**
 - Phrase Training/Minimum Error Rate Training
 - Moses and FST decoders used, comparable performance

- **Participated in Arabic/Turkish ⇔ English BTEC Data track**
Phrase Based FST Decoder

- The target language hypothesis is the best path through the following transducer:

\[E = I \circ P \circ D \circ T \circ L \]

- where,
 - \(I \) = source language input acceptor
 - \(P \) = phrase segmentation transducer
 - \(D \) = weighted phrase swapping transducer
 - \(T \) = weighted phrase translation transducer (source phrases to target words)
 - \(L \) = weighted target language model acceptor

- Apply phrase swapping twice for long distance reordering

- OOV words are inserted during decoding as parallel links to \(P \), \(D \), \(T \), and \(L \) models.

- Allows for direct decoding on pruned ASR lattices
System Combination

- Generate consensus networks using round-robin alignment, where each system gets to be the skeleton alignment
- Take union of all consensus networks and apply a language model
- Weight optimization on a development set using n-best lists
- Final combination on unseen data using optimized system weights
Outline

- IWSLT-2009 System Architecture

- Better Arabic Morphology Processing
 - CoMMA

- Domain Adaptation Overview
 - Unsupervised and Semi-supervised Adaptation
 - Human-in-the Loop Adaptation
Arabic Preprocessing

AP5 Review

<table>
<thead>
<tr>
<th>Preprocessing Method</th>
<th>Mean BLEU on dev6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (No normalization or AP5)</td>
<td>42.06</td>
</tr>
<tr>
<td>Remove all diacritics except tanween, no AP5</td>
<td>49.40</td>
</tr>
<tr>
<td>Remove all diacritics, no AP5</td>
<td>50.39</td>
</tr>
<tr>
<td>Remove all diacritics, apply AP5</td>
<td>53.55</td>
</tr>
</tbody>
</table>

- **“Diacritics” removed:**
 - Short vowels
 - **Sukuun:** Marks absence of sort vowel
 - **Shadda:** Marks consonant gemination (i.e., doubling)
 - **Tanween:** Case markers for indefinite forms & other uses
 - **Tatweel:** Stretches letters in Arabic typography (not a true diacritic)
- **AP5 segments the following from stems:**
 - **Prefixes:** al-, bi-, fa-, ka-, li-, wa-
 - **Suffixes:** Attached pronouns
CoMMA Processing for Arabic

- **Observation**: *With limited training data more morphological processing seems to help, less with more training data*

- **Count Mediated Morphological Analysis**
 - Modification to AP5: decide segmentation based on counts

- **Given a count threshold t, and a vocabulary W**

- **Foreach w in |W|**
 - Apply AP5 diacritic normalization procedure
 - If count(w) < t
 - Apply AP5 segmentation of clitics, etc.
 - Else don’t segment
CoMMA Experiments

<table>
<thead>
<tr>
<th>COMMA Threshold</th>
<th>BLEU Score</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev6</td>
<td>Dev7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>50.00</td>
<td>51.94</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>53.92</td>
<td>54.29</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>53.14</td>
<td>54.64</td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>54.02</td>
<td>54.57</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>53.33</td>
<td>54.48</td>
<td></td>
</tr>
</tbody>
</table>

Baseline (No Tokenization)

- AP5 and CoMMA results in 7-8% relative improvement
- CoMMA only slightly better than AP5, +0.5–1.5 BLEU in system combination
Outline

• IWSLT-2009 System Architecture

• Better Arabic Morphology Processing
 – CoMMA

• Domain Adaptation Overview
 – Unsupervised and Semi-supervised Adaptation
 – Human-in-the Loop Adaptation
Cross Domain Adaptation Overview

• Observations from past work
 – SMT performs best when training and test data are matched
 – Adding large volumes of out-of-domain data to training does not improve performance

• Adaptation
 – **GOAL:** Optimally port general purpose (out-of-domain) models to specific domain with limited in-domain data

 ![Diagram showing GP Model, Adaptation Data, and Adapted Model]

• **NOTE:** Adapted Systems not used in IWSLT BTEC submissions
Data

- **General purpose data:**
 - 500k Arabic-English parallel data from ISI automatically extracted parallel corpus
 - Domain: newswire data

- **In-domain (adaptation) data:**
 - 20k IWSLT-2009 BTEC Arabic-English training set
 - Domain: travel
Adaptation of Phrase-based MT Models

Semi-supervised

Initial Data

General Purpose Parallel Data

Train

Translate

Translation & Evaluation

GP Model

MT Output

Human Judges

Adaptation Algorithms

Adapted MT Model

Adaptation

In-Domain Source Data

High-Quality MT Translations

MIT Lincoln Laboratory

Air Force Research Laboratory
Adaptation of Phrase-based MT Models

Human-in-the-Loop

Initial Data
- General Purpose Parallel Data

Translation & Evaluation
- GP Model
- MT Output
- Human Judges

Adaptation
- Adapted Model
- Adaptation Algorithms
- Poor-Quality MT Translations
- Human Translator Corrections

In-Domain Source Data
Selection of In-domain Adaptation Data

- General purpose models used to translate the IWSLT ’09 training set
- Translations ranked using METEOR as a proxy for a human judge
- Ranked sentences divided into octiles and used for experiments:
 - Semi-supervised adaptation: Use top scoring octiles for adaptation
 Goal: is to use best in-domain target data
 - Human-in-the-loop adaptation: Use bottom scoring octiles for adaptation
 Goal: is to correct worst in-domain target data (active learning paradigm)

<table>
<thead>
<tr>
<th>Octiles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>METEOR</td>
<td>0.66</td>
<td>0.57</td>
<td>0.51</td>
<td>0.45</td>
<td>0.40</td>
<td>0.34</td>
<td>0.26</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Adaptation Approaches

Language Model Adaptation

Phrase Table$_{GP}$

Language Model$_{GP}$

Language Model$_{IWSLT}$

SCORE

λ_1

λ_2

λ_3

- Optimized for BLEU
- Trained on:
 - Semi-supervised: Machine translations of IWSLT training set
 - Human-in-the-Loop: Reference translations of IWSLT training set
Adaptation Approaches

Phrase Table Adaptation

Phraese Table_{\text{GP}} \rightarrow \text{MAP-Based Adaptation}^* \rightarrow \text{Phrase Table}_{\text{IWSLT+GP}} \rightarrow \text{SCORE}

\text{Phrase Table}_{\text{IWSLT}} \rightarrow \text{Phrase Table}_{\text{IWSLT+GP}}

\text{Language Model}_{\text{GP}} \rightarrow \text{SCORE}

*Based on approaches described in:
Phrase Table MAP Adaptation

- Interpolated phrase table probabilities are computed using the following equation:

\[\hat{p}(s \mid t) = \lambda p_{\text{in-domain}}(s \mid t) + (1 - \lambda) p_{\text{gp}}(s \mid t) \]

- \(p_{\text{in-domain}} \): probability estimate from in-domain models
- \(p_{\text{gp}} \): probability estimate from general purpose models
- \(\lambda \): interpolation coefficient computed using the following equation:

\[\lambda = \frac{N_{\text{in-domain}}(s, t)}{N_{\text{in-domain}}(s, t) + \tau} \]

- \(\tau \): Fixed-value MAP relevance factor
- \(N_{\text{in-domain}}(s, t) \): observed count of phrase pair (s,t)
Experimental Results

Semi-supervised Adaptation

Semi-supervised Training Experiments (IWSLT09 dev7)

Best semi-supervised Adaptation

Unsupervised Adaptation

Top X Octiles of Training Set Scores

- Phrase Table and LM Adaptation
- In-Domain Only
- LM Adaptation
- Phrase Table Adaptation
- Baseline (GP Model only)
Experimental Results

Human-in-the-Loop Adaptation

Human-in-the-Loop Experiments (IWSLT09 dev7)

Gains from Adaptation Methods:

- More improvement correcting bottom octiles
- 1/8 data correction = +13 BLEU improvement

Bottom X Octiles of Training Set Scores

BLEU Score

In-Domain Only
LM Adaptation
Phrase Table Adaptation
Phrase Table and LM Adaptation

GP Baseline
Experimental Results

Best System Scores

<table>
<thead>
<tr>
<th>System</th>
<th>dev7</th>
<th>eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP</td>
<td>23.06</td>
<td>21.35</td>
</tr>
<tr>
<td>GP + Unsupervised LM + PT Adaptation</td>
<td>25.74</td>
<td>23.86</td>
</tr>
<tr>
<td>GP + Semi-supervised LM + PT Adaptation (Top quartile)</td>
<td>27.19</td>
<td>25.89</td>
</tr>
<tr>
<td>IWSLT ’09 Baseline</td>
<td>54.63</td>
<td>52.69</td>
</tr>
<tr>
<td>GP + Human-in-the-Loop LM + PT Adaptation</td>
<td>56.57</td>
<td>56.11</td>
</tr>
</tbody>
</table>
Conclusions

• Morphological processing is critical
 – +4 BLEU for Turkish using Bilkent Analyzer
 – +3.5-4 BLEU for Arabic using AP5

• CoMMa gains in system combination
 – Multiple CoMMa systems (20, 200, 2000): +0.5-1.5 BLEU over AP5

• Unsupervised Adaptation
 – LM: +1.5 BLEU, PT: +0.5 BLEU
 – Combined: +2.5-3.0 BLEU (15% relative) compared to GP only

• Semi-supervised Adaptation
 – Gains +1.5-2 BLEU over Unsupervised, only ¼ of total data
 – But requires human judgement

• Human-in-the-Loop Adaptation
 – +2-3.5 BLEU using all IWSLT data
 – +13 BLEU using 1/8th of total data
 – Gains from LM and PT are non-additive