Overview

We participated in two BTEC translation tasks: Chinese-English and Arabic-English.

Our interests include:
- Different preprocessing schemes for Chinese and Arabic
- Combination of phrase tables based on different alignments
- Semi-supervised reranking of N-best lists
- Sentence-type specific part-of-speech (POS) language modeling for rescoring

Baseline translation system

- A state-of-the-art two-pass phrase-based SMT system
- Trained within the Moses development and decoding framework
- A 4-gram Language model trained using the SRILM toolkit

Preprocessing schemes

- Chinese segmentation and markup
 - The Stanford segmenter for re-segmenting the Chinese data
 - Character-based segmentation for the Chinese data
 - An in-house tool Decatur to markup dates and numbers in both the Chinese and English data
 - A simple tool to markup just numbers in both the Chinese and English data
 - Strip off all punctuations in both the Chinese and English data
 - None of the above schemes led to significance improvement over the original segmentation
- Arabic tokenization
 - The Columbia University MADA and TOKEN tools with two schemes:
 - Split off w+, f+, h+, b+, and Al+
 - TOKAN’s D2 scheme, which does not split off Al+ but instead separates s+
 - The first scheme yielded better performance

Phrase table combination

- Phrase tables learned from GIZA++ and MTTK alignments respectively
- The two individual tables were combined into a single table
- Additional binary features to indicate which alignment produced each phrase pair entry
- The combined table outperformed the individual tables in the Chinese-English system

Semi-supervised reranking

The labeled data were produced using smoothed sentence-level BLEU scores.

- The ranking function was learned using a modified RankBoost algorithm
 - Maximize the margins of the labeled and unlabeled data jointly
 - Treats the reranking problem as a problem of binary classification on hypothesis pairs
 - Iteratively train a weak ranker and adjust sample weights according to the classification results
 - The final ranking function is a linear combination of the weak rankers from all iterations

- Applied in the second pass for reranking N-best lists
- For IWSLT 2007 Italian-English and Arabic-English data, it achieved substantial improvements
- For this year data, it improved precision based evaluation metrics, such as PER, TER, WER and Precision, but degraded n-gram based metrics, such as BLEU and NIST

Sentence-type specific POS language model

- Captures the syntactic differences between questions and statements
- Determine the sentence type using punctuations in the source sentences
- Applied in the second pass for reranking N-best lists
- Led to a small improvement in the Chinese-English system

Official evaluation results

<table>
<thead>
<tr>
<th>Language</th>
<th>Case+Punc</th>
<th>No Case+No Punc</th>
</tr>
</thead>
</table>
| **Chinese-English**
| BLEU | 0.41 | 0.40 |
| PER | 0.42 | 0.45 |
| Meteor | 0.66 | 0.62 |
| NIST | 7.05 | 7.30 |

<table>
<thead>
<tr>
<th>Language</th>
<th>Case+Punc</th>
<th>No Case+No Punc</th>
</tr>
</thead>
</table>
| **Arabic-English**
| BLEU | 0.48 | 0.48 |
| PER | 0.35 | 0.38 |
| Meteor | 0.72 | 0.69 |
| NIST | 6.65 | 6.93 |